Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7766580/publications.pdf Version: 2024-02-01

<u>Μει Ζηλης</u>

#	Article	IF	CITATIONS
1	All-climate and air-stable NASICON-Na2TiV(PO4)3 cathode with three-electron reaction toward high-performance sodium-ion batteries. Chemical Engineering Journal, 2022, 433, 133542.	6.6	27
2	In Situ Synthesis of Feâ^'N Coâ€doped Porous Carbon Nanospheres by Extended Stöber Method for Oxygen Reduction in Both Alkaline and Acidic Media. ChemElectroChem, 2022, 9, .	1.7	2
3	Hygroscopic Chemistry Enables Fireâ€Tolerant Supercapacitors with a Selfâ€Healable "Soluteâ€inâ€Air― Electrolyte. Advanced Materials, 2022, 34, e2109857.	11.1	12
4	Enabling the Highâ€Voltage Operation of Layered Ternary Oxide Cathodes via Thermally Tailored Interphase. Small Methods, 2022, 6, e2100920.	4.6	5
5	Toy-blocks-inspired programmable supercapacitors with high energy density. Chemical Engineering Journal, 2022, 445, 136788.	6.6	7
6	Strainâ€Driven Autoâ€Detachable Patterning of Flexible Electrodes. Advanced Materials, 2022, 34, .	11.1	50
7	Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery. Nano-Micro Letters, 2022, 14, .	14.4	65
8	A Figure of Merit for Fast-Charging Li-ion Battery Materials. ACS Nano, 2022, 16, 8525-8530.	7.3	37
9	LiVOPO ₄ â€Modified Lithiumâ€Rich Layered Composite Cathodes for Highâ€Performance Lithiumâ€ion Batteries. ChemElectroChem, 2021, 8, 532-538.	1.7	7
10	Deep Cycling for High apacity Liâ€lon Batteries. Advanced Materials, 2021, 33, e2004998.	11.1	43
11	Recent Advances in Siliconâ€Based Electrodes: From Fundamental Research toward Practical Applications. Advanced Materials, 2021, 33, e2004577.	11.1	168
12	Decimal Solvent-Based High-Entropy Electrolyte Enabling the Extended Survival Temperature of Lithium-Ion Batteries to â~130°C. CCS Chemistry, 2021, 3, 1245-1255.	4.6	65
13	Interfacial reinforcement structure design towards ultrastable lithium storage in MoS2-based composited electrode. Chemical Engineering Journal, 2021, 416, 129094.	6.6	36
14	Commercializationâ€Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives. Small, 2021, 17, e2102233.	5.2	38
15	Structural insights into the dynamic and controlled multiphase evolution of layered-spinel heterostructured sodium oxide cathode. Cell Reports Physical Science, 2021, 2, 100547.	2.8	23
16	An on-demand plant-based actuator created using conformable electrodes. Nature Electronics, 2021, 4, 134-142.	13.1	81
17	Highly Elastic Binders Incorporated with Helical Molecules to Improve the Electrochemical Stability of Black Phosphorous Anodes for Sodiumâ€ion Batteries. Batteries and Supercaps, 2020, 3, 101-107.	2.4	8
18	Spherical Mesoporous Metal Oxides with Tunable Orientation Enabled by Growth Kinetics Control. Journal of the American Chemical Society, 2020, 142, 17897-17902.	6.6	13

Wei Zhang

#	Article	IF	CITATIONS
19	Jelly-Inspired Injectable Guided Tissue Regeneration Strategy with Shape Auto-Matched and Dual-Light-Defined Antibacterial/Osteogenic Pattern Switch Properties. ACS Applied Materials & Interfaces, 2020, 12, 54497-54506.	4.0	60
20	Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. Nature Communications, 2020, 11, 2183.	5.8	47
21	Dielectric Polarization in Inverse Spinelâ€&tructured Mg ₂ TiO ₄ Coating to Suppress Oxygen Evolution of Liâ€Rich Cathode Materials. Advanced Materials, 2020, 32, e2000496.	11.1	134
22	Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery. Research, 2020, 2020, 1469301.	2.8	33
23	Unraveling the Formation of Amorphous MoS ₂ Nanograins during the Electrochemical Delithiation Process. Advanced Functional Materials, 2019, 29, 1904843.	7.8	38
24	Interfacial Latticeâ€ 5 trainâ€Driven Generation of Oxygen Vacancies in an Aerobicâ€Annealed TiO ₂ (B) Electrode. Advanced Materials, 2019, 31, e1906156.	11.1	53
25	Lowering Charge Transfer Barrier of LiMn ₂ O ₄ via Nickel Surface Doping To Enhance Li ⁺ Intercalation Kinetics at Subzero Temperatures. Journal of the American Chemical Society, 2019, 141, 14038-14042.	6.6	125
26	Approaching the Lithiation Limit of MoS ₂ While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage. Angewandte Chemie - International Edition, 2019, 58, 3521-3526.	7.2	62
27	Approaching the Lithiation Limit of MoS ₂ While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage. Angewandte Chemie, 2019, 131, 3559-3564.	1.6	18
28	Fluoroethylene Carbonate Enabling a Robust LiFâ€rich Solid Electrolyte Interphase to Enhance the Stability of the MoS ₂ Anode for Lithiumâ€lon Storage. Angewandte Chemie, 2018, 130, 3718-3722.	1.6	40
29	Fluoroethylene Carbonate Enabling a Robust LiFâ€rich Solid Electrolyte Interphase to Enhance the Stability of the MoS ₂ Anode for Lithiumâ€ion Storage. Angewandte Chemie - International Edition, 2018, 57, 3656-3660.	7.2	149
30	Localized concentration reversal of lithium during intercalation into nanoparticles. Science Advances, 2018, 4, eaao2608.	4.7	50
31	Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO ₂ Nanowire Composite. Advanced Materials, 2018, 30, 1704531.	11.1	270
32	Honeycombâ€Lanternâ€Inspired 3D Stretchable Supercapacitors with Enhanced Specific Areal Capacitance. Advanced Materials, 2018, 30, e1805468.	11.1	152
33	A vesicle-aggregation-assembly approach to highly ordered mesoporous \hat{I}^3 -alumina microspheres with shifted double-diamond networks. Chemical Science, 2018, 9, 7705-7714.	3.7	20
34	Tuning Li-Ion Diffusion in α-LiMn _{1–<i>x</i>} Fe _{<i>x</i>} PO ₄ Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-Ion Batteries. Nano Letters, 2017, 17, 4934-4940.	4.5	38
35	General Synthetic Strategy for Hollow Hybrid Microspheres through a Progressive Inward Crystallization Process. Journal of the American Chemical Society, 2016, 138, 5916-5922.	6.6	43
36	Core–shell structured TiO ₂ @polydopamine for highly active visible-light photocatalysis. Chemical Communications, 2016, 52, 7122-7125.	2.2	151

Wei Zhang

#	Article	IF	CITATIONS
37	The formation of an ordered microporous aluminum-based material mediated by phthalic acid. Chemical Communications, 2016, 52, 8038-8041.	2.2	2
38	Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy. Biomaterials, 2016, 103, 75-85.	5.7	68
39	Controlled formation of uniform CeO ₂ nanoshells in a buffer solution. Chemical Communications, 2016, 52, 1420-1423.	2.2	17
40	A novel nanoporous Fe-doped lithium manganese phosphate material with superior long-term cycling stability for lithium-ion batteries. Nanoscale, 2015, 7, 11509-11514.	2.8	40
41	Core–shell structured Ce ₂ S ₃ @ZnO and its potential as a pigment. Journal of Materials Chemistry A, 2015, 3, 2176-2180.	5.2	39
42	Controlled formation of core–shell structures with uniform AlPO ₄ nanoshells. Chemical Communications, 2015, 51, 2943-2945.	2.2	18
43	Controlled Formation of Metal@Al ₂ O ₃ Yolk–Shell Nanostructures with Improved Thermal Stability. ACS Applied Materials & Interfaces, 2015, 7, 27031-27034.	4.0	37
44	Optimizing LiFePO ₄ @C Core–Shell Structures via the 3-Aminophenol–Formaldehyde Polymerization for Improved Battery Performance. ACS Applied Materials & Interfaces, 2014, 6, 22719-22725.	4.0	25
45	Oneâ€Nanometerâ€Precision Control of Al ₂ O ₃ Nanoshells through a Solutionâ€Based Synthesis Route. Angewandte Chemie - International Edition, 2014, 53, 12776-12780.	7.2	95
46	Optimizing the carbon coating on LiFePO4 for improved battery performance. RSC Advances, 2014, 4, 7795.	1.7	60
47	Accurate surface control of core–shell structured LiMn _{0.5} Fe _{0.5} PO ₄ @C for improved battery performance. Journal of Materials Chemistry A, 2014, 2, 17359-17365.	5.2	60
48	A Facile Method to Improve the Photocatalytic and Lithiumâ€ion Rechargeable Battery Performance of TiO ₂ Nanocrystals. Advanced Energy Materials, 2013, 3, 1516-1523.	10.2	166
49	Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464, 392-395.	13.7	3,025