Pierre Chymkowitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7766413/publications.pdf

Version: 2024-02-01

22 papers 776

687363 13 h-index 752698 20 g-index

26 all docs 26 docs citations

times ranked

26

1092 citing authors

#	Article	IF	CITATIONS
1	Waves of sumoylation support transcription dynamics during adipocyte differentiation. Nucleic Acids Research, 2022, 50, 1351-1369.	14.5	8
2	Cell Cycle-Dependent Transcription: The Cyclin Dependent Kinase Cdk1 Is a Direct Regulator of Basal Transcription Machineries. International Journal of Molecular Sciences, 2022, 23, 1293.	4.1	21
3	Analysis of the pheromone signaling pathway by RT-qPCR in the budding yeast Saccharomyces cerevisiae. STAR Protocols, 2022, 3, 101210.	1.2	O
4	Kel1 is a phosphorylation-regulated noise suppressor of the pheromone signaling pathway. Cell Reports, 2021, 37, 110186.	6.4	4
5	Desumoylation of RNA polymerase III lies at the core of the Sumo stress response in yeast. Journal of Biological Chemistry, 2019, 294, 18784-18795.	3.4	12
6	Regulation of tRNA synthesis by posttranslational modifications of RNA polymerase III subunits. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 310-319.	1.9	8
7	Cdk1 gates cell cycle-dependent tRNA synthesis by regulating RNA polymerase III activity. Nucleic Acids Research, 2018, 46, 11698-11711.	14.5	27
8	Centromeres License the Mitotic Condensation of Yeast Chromosome Arms. Cell, 2018, 175, 780-795.e15.	28.9	37
9	TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1039-1044.	7.1	38
10	Mapping the Synthetic Dosage Lethality Network of CDK1/CDC28. G3: Genes, Genomes, Genetics, 2017, 7, 1753-1766.	1.8	8
11	Anabolic transcription: Secrets of the sumo diet. Cell Cycle, 2017, 16, 593-594.	2.6	1
12	SUMOâ€regulated transcription: Challenging the dogma. BioEssays, 2015, 37, 1095-1105.	2.5	81
13	Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes. Genome Research, 2015, 25, 897-906.	5.5	49
14	TORC1 Inhibits GSK3-Mediated Elo2 Phosphorylation to Regulate Very Long Chain Fatty Acid Synthesis and Autophagy. Cell Reports, 2013, 5, 1036-1046.	6.4	41
15	The cell cycle rallies the transcription cycle. Transcription, 2013, 4, 3-6.	3.1	19
16	Cdc28 kinase activity regulates the basal transcription machinery at a subset of genes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10450-10455.	7.1	37
17	A chemicalâ€genetic screen to unravel the genetic network of CDC28/CDK1 links ubiquitin and Rad6–Bre1 to cell cycle progression. FASEB Journal, 2012, 26, 590.1.	0.5	O
18	The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process. EMBO Journal, 2011, 30, 468-479.	7.8	107

#	Article	IF	CITATIONS
19	A chemical-genetic screen to unravel the genetic network of <i>CDC28/CDK1</i> links ubiquitin and Rad6–Bre1 to cell cycle progression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18748-18753.	7.1	31
20	XPG Stabilizes TFIIH, Allowing Transactivation of Nuclear Receptors: Implications for Cockayne Syndrome in XP-G/CS Patients. Molecular Cell, 2007, 26, 231-243.	9.7	177
21	Selective Regulation of Vitamin D Receptor-Responsive Genes by TFIIH. Molecular Cell, 2004, 16, 187-197.	9.7	67
22	How to Select a Mate: \hat{A} Kel 1 is a Phosphorylation-Regulated Suppressor of the Pheromone Signaling Pathway. SSRN Electronic Journal, 0, , .	0.4	0