
May Griffith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7766205/publications.pdf Version: 2024-02-01

MAY CDIFFITH

#	Article	IF	CITATIONS
1	Functional Human Corneal Equivalents Constructed from Cell Lines. Science, 1999, 286, 2169-2172.	6.0	432
2	PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials, 2008, 29, 3960-3972.	5.7	360
3	Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 255-265.	1.8	356
4	A Biosynthetic Alternative to Human Donor Tissue for Inducing Corneal Regeneration: 24-Month Follow-Up of a Phase 1 Clinical Study. Science Translational Medicine, 2010, 2, 46ra61.	5.8	311
5	Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials, 2014, 35, 2420-2427.	5.7	233
6	Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15346-15351.	3.3	226
7	Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials, 2008, 29, 1147-1158.	5.7	202
8	The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials, 2012, 33, 4947-4956.	5.7	200
9	A Simple, Cross-linked Collagen Tissue Substitute for Corneal Implantation. , 2006, 47, 1869.		184
10	Collagen–phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials, 2009, 30, 1551-1559.	5.7	171
11	Biofunctionalization of collagen for improved biological response: Scaffolds for corneal tissue engineering. Biomaterials, 2007, 28, 78-88.	5.7	162
12	A Collagen–Chitosan Hydrogel for Endothelial Differentiation and Angiogenesis. Tissue Engineering - Part A, 2010, 16, 3099-3109.	1.6	139
13	Tissue-Engineered Injectable Collagen-Based Matrices for Improved Cell Delivery and Vascularization of Ischemic Tissue Using CD133+ Progenitors Expanded From the Peripheral Blood. Circulation, 2006, 114, I-138-I-144.	1.6	124
14	Tissue-Engineered Recombinant Human Collagen-Based Corneal Substitutes for Implantation: Performance of Type I versus Type III Collagen. , 2008, 49, 3887.		116
15	Mimicking biofilm formation and development: Recent progress in inÂvitro and inÂvivo biofilm models. IScience, 2021, 24, 102443.	1.9	114
16	Crosslinked collagen hydrogels as corneal implants: Effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomaterialia, 2013, 9, 7796-7805.	4.1	107
17	A Collagen-Based Scaffold for a Tissue Engineered Human Cornea: Physical and Physiological Properties. International Journal of Artificial Organs, 2003, 26, 764-773.	0.7	104
18	Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. Journal of Materials Science: Materials in Medicine, 2008, 19, 3365-3371.	1.7	103

#	Article	IF	CITATIONS
19	Artificial Human Corneas. Cornea, 2002, 21, S54-S61.	0.9	102
20	EGF-grafted PDMS surfaces in artificial cornea applications. Biomaterials, 2005, 26, 7286-7296.	5.7	101
21	Bioengineered corneas: how close are we?. Current Opinion in Ophthalmology, 2003, 14, 192-197.	1.3	92
22	Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration. Biomaterials, 2005, 26, 3093-3104.	5.7	91
23	A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 263-271.	1.3	91
24	Fibrin Glues in Combination with Mesenchymal Stem Cells to Develop a Tissue-Engineered Cartilage Substitute. Tissue Engineering - Part A, 2011, 17, 323-335.	1.6	90
25	Cationic polymer brush grafted-nanodiamond via atom transfer radical polymerization for enhanced gene delivery and bioimaging. Journal of Materials Chemistry, 2011, 21, 7755.	6.7	88
26	Functional fabrication of recombinant human collagen–phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomaterialia, 2015, 12, 70-80.	4.1	88
27	Collagen and glycopolymer based hydrogel for potential corneal application. Acta Biomaterialia, 2010, 6, 187-194.	4.1	87
28	Controlled Release of Bevacizumab Through Nanospheres for Extended Treatment of Age-Related Macular Degeneration. Open Ophthalmology Journal, 2012, 6, 54-58.	0.1	87
29	Safety and efficacy of composite collagen–silver nanoparticle hydrogels as tissue engineering scaffolds. Nanoscale, 2015, 7, 18789-18798.	2.8	83
30	Title is missing!. Journal of Technology Transfer, 2001, 26, 369-384.	2.5	82
31	Properties of Porcine and Recombinant Human Collagen Matrices for Optically Clear Tissue Engineering Applications. Biomacromolecules, 2006, 7, 1819-1828.	2.6	81
32	Characterization and Inhibition of Fibrin Hydrogel–Degrading Enzymes During Development of Tissue Engineering Scaffolds. Tissue Engineering, 2007, 13, 1469-1477.	4.9	80
33	Biomaterials-enabled cornea regeneration in patients at high risk for rejection of donor tissue transplantation. Npj Regenerative Medicine, 2018, 3, 2.	2.5	76
34	Alternatives to eye bank native tissue for corneal stromal replacement. Progress in Retinal and Eye Research, 2017, 59, 97-130.	7.3	75
35	Corneal Regeneration Following Implantation of a Biomimetic Tissueâ€Engineered Substitute. Clinical and Translational Science, 2009, 2, 162-164.	1.5	74
36	Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale, 2016, 8, 6484-6489.	2.8	74

#	Article	IF	CITATIONS
37	Genipin Cross-Linked Fibrin Hydrogels for in vitro Human Articular Cartilage Tissue-Engineered Regeneration. Cells Tissues Organs, 2009, 190, 313-325.	1.3	73
38	Bioengineered Corneas Grafted as Alternatives to Human Donor Corneas in Three Highâ€Risk Patients. Clinical and Translational Science, 2015, 8, 558-562.	1.5	72
39	Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. Journal of Controlled Release, 2016, 229, 163-171.	4.8	70
40	LiQD Cornea: Pro-regeneration collagen mimetics as patches and alternatives to corneal transplantation. Science Advances, 2020, 6, .	4.7	70
41	LBP and CD14 Secreted in Tears by the Lacrimal Glands Modulate the LPS Response of Corneal Epithelial Cells. , 2005, 46, 4235.		67
42	Regeneration of functional nerves within full thickness collagen–phosphorylcholine corneal substitute implants in guinea pigs. Biomaterials, 2010, 31, 2770-2778.	5.7	65
43	Artificial corneas: a regenerative medicine approach. Eye, 2009, 23, 1985-1989.	1.1	62
44	Biosynthetic Corneal Implants for Replacement of Pathologic Corneal Tissue: Performance in a Controlled Rabbit Alkali Burn Model. , 2011, 52, 651.		62
45	Hyperelastic Nanocellulose-Reinforced Hydrogel of High Water Content for Ophthalmic Applications. ACS Biomaterials Science and Engineering, 2016, 2, 2072-2079.	2.6	62
46	A stromal cell-derived factor-1 releasing matrix enhances the progenitor cell response and blood vessel growth in ischaemic skeletal muscle. , 2011, 22, 109-123.		61
47	LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control. Nanoscale, 2014, 6, 5725-5728.	2.8	60
48	Innervated human corneal equivalents as in vitro models for nerveâ€ŧarget cell interactions. FASEB Journal, 2004, 18, 170-172.	0.2	59
49	Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation. RSC Advances, 2016, 6, 55745-55749.	1.7	59
50	Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications. Journal of Materials Chemistry B, 2016, 4, 318-326.	2.9	59
51	Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering. Biomaterials, 2009, 30, 5403-5408.	5.7	54
52	Epoxy Cross-Linked Collagen and Collagen-Laminin Peptide Hydrogels as Corneal Substitutes. Journal of Functional Biomaterials, 2013, 4, 162-177.	1.8	50
53	Applications of self-assembling peptide scaffolds in regenerative medicine: the way to the clinic. Journal of Materials Chemistry B, 2014, 2, 8466-8478.	2.9	50
54	Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants. Acta Biomaterialia, 2018, 69, 120-130.	4.1	48

#	Article	IF	CITATIONS
55	Enterovirus 70 Binds to Different Glycoconjugates Containing α2,3-Linked Sialic Acid on Different Cell Lines. Journal of Virology, 2005, 79, 7087-7094.	1.5	46
56	Cathelicidin LL-37 and HSV-1 Corneal Infection: Peptide Versus Gene Therapy. Translational Vision Science and Technology, 2014, 3, 4.	1.1	46
57	Synthesis and Biological Evaluation of Fucoidan-Mimetic Glycopolymers through Cyanoxyl-Mediated Free-Radical Polymerization. Biomacromolecules, 2014, 15, 2359-2368.	2.6	46
58	Functional Innervation in Tissue Engineered Models for In Vitro Study and Testing Purposes. Toxicological Sciences, 2004, 82, 525-533.	1.4	43
59	Regenerative Approaches as Alternatives to Donor Allografting for Restoration of Corneal Function. Ocular Surface, 2012, 10, 170-183.	2.2	43
60	The structural and optical properties of type III human collagen biosynthetic corneal substitutes. Acta Biomaterialia, 2015, 25, 121-130.	4.1	43
61	Evaluation of current techniques of corneal epithelial removal in hyperopic photorefractive keratectomy. Journal of Cataract and Refractive Surgery, 1998, 24, 1070-1078.	0.7	42
62	Polycaprolactone–thiopheneâ€conjugated carbon nanotube meshes as scaffolds for cardiac progenitor cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1553-1561.	1.6	42
63	Synthesis and anticancer properties of fucoidan-mimetic glycopolymer coated gold nanoparticles. Chemical Communications, 2015, 51, 8532-8535.	2.2	41
64	Human vascular endothelial cells with extended life spans: in vitro cell response, protein expression, and angiogenesis. Angiogenesis, 2002, 5, 21-33.	3.7	39
65	Collagen-Poly(N-Isopropylacrylamide)???Based Membranes for Corneal Stroma Scaffolds. Cornea, 2003, 22, S81-S88.	0.9	39
66	Hierarchical scaffold design for mesenchymal stem cell-based gene therapy of hemophilia B. Biomaterials, 2011, 32, 295-305.	5.7	39
67	Immunological responses in mice to full-thickness corneal grafts engineered from porcine collagen. Biomaterials, 2007, 28, 3807-3814.	5.7	38
68	Surface-Engineered Contact Lens as an Advanced Theranostic Platform for Modulation and Detection of Viral Infection. ACS Applied Materials & amp; Interfaces, 2015, 7, 25487-25494.	4.0	38
69	Building In Vitro Models of Organs. International Review of Cytology, 2005, 244, 137-173.	6.2	36
70	Bioengineered corneas for transplantation and in vitro toxicology. Frontiers in Bioscience - Landmark, 2009, Volume, 3326.	3.0	36
71	Electroconductive nanoengineered biomimetic hybrid fibers for cardiac tissue engineering. Journal of Materials Chemistry B, 2017, 5, 2402-2406.	2.9	34
72	Recent advances in the design of artificial corneas. Current Opinion in Ophthalmology, 2014, 25, 240-247.	1.3	32

#	Article	IF	CITATIONS
73	High-risk corneal allografts: A therapeutic challenge. World Journal of Transplantation, 2016, 6, 10.	0.6	32
74	Innervation of Tissue-Engineered Recombinant Human Collagen-Based Corneal Substitutes: A Comparative In Vivo Confocal Microscopy Study. , 2008, 49, 3895.		31
75	Bioactive Hydrogel-Filament Scaffolds for Nerve Repair and Regeneration. International Journal of Artificial Organs, 2006, 29, 1082-1091.	0.7	30
76	Phospholipid Growth Factors and Corneal Wound Healing. Annals of the New York Academy of Sciences, 2000, 905, 142-158.	1.8	30
77	Regeneration of Corneal Cells and Nerves in an Implanted Collagen Corneal Substitute. Cornea, 2008, 27, 580-589.	0.9	30
78	Fibrin Sealants from Fresh or Fresh/Frozen Plasma as Scaffolds for <i>In Vitro</i> Articular Cartilage Regeneration. Tissue Engineering - Part A, 2009, 15, 2285-2297.	1.6	30
79	Localization of candidate stem and progenitor cell markers within the human cornea, limbus, and bulbar conjunctiva in vivo and in cell culture. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 921-931.	2.0	27
80	Surface modification of collagenâ€based artificial cornea for reduced endothelialization. Journal of Biomedical Materials Research - Part A, 2009, 88A, 755-768.	2.1	27
81	Nanotechnology in stem cells research: advances and applications. Frontiers in Bioscience - Landmark, 2012, 17, 1747.	3.0	27
82	Collagen-Based Fillers as Alternatives to Cyanoacrylate Glue for the Sealing of Large Corneal Perforations. Cornea, 2018, 37, 609-616.	0.9	26
83	In Vitro Cultivation of Limbal Epithelial Stem Cells on Surface-Modified Crosslinked Collagen Scaffolds. Stem Cells International, 2019, 2019, 1-17.	1.2	26
84	Controlled Release of Acyclovir Through Bioengineered Corneal Implants with Silica Nanoparticle Carriers~!2009-08-29~!2010-01-05~!2010-03-18~!. The Open Tissue Engineering and Regenerative Medicine Journal, 2010, 3, 10-17.	2.6	25
85	Innervation of Tissue-Engineered Corneal Implants in a Porcine Model: A 1-Year In Vivo Confocal Microscopy Study. , 2007, 48, 3537.		24
86	Differentiation of a Fibrin Gel Encapsulated Chondrogenic Cell Line. International Journal of Artificial Organs, 2007, 30, 619-627.	0.7	24
87	Promotion of Angiogenesis in Tissue Engineering: Developing Multicellular Matrices with Multiple Capacities. International Journal of Artificial Organs, 2006, 29, 1148-1157.	0.7	23
88	The Artificial Cornea. Methods in Molecular Biology, 2013, 1014, 45-52.	0.4	23
89	Regenerative approaches for the cornea. Journal of Internal Medicine, 2016, 280, 276-286.	2.7	23
90	Retinoic acid, midkine, and defects of secondary neurulation. Teratology, 2000, 62, 123-133.	1.7	22

#	Article	IF	CITATIONS
91	Collagen-Based Photoactive Agent for Tissue Bonding. ACS Applied Materials & Interfaces, 2017, 9, 9265-9270.	4.0	22
92	Autologous Fibrin Glue as an Encapsulating Scaffold for Delivery of Retinal Progenitor Cells. Frontiers in Bioengineering and Biotechnology, 2014, 2, 85.	2.0	21
93	Interleukin-1α Released from Epithelial Cells after Adenovirus Type 37 Infection Activates Intercellular Adhesion Molecule 1 Expression on Human Vascular Endothelial Cells. Journal of Virology, 2002, 76, 427-431.	1.5	20
94	Biosynthetic Corneal Substitute Implantation in Dogs. Cornea, 2010, 29, 910-916.	0.9	20
95	Artificial Polymeric Scaffolds as Extracellular Matrix Substitutes for Autologous Conjunctival Goblet Cell Expansion. , 2016, 57, 6134.		20
96	Controlled Delivery of Human Cells by Temperature Responsive Microcapsules. Journal of Functional Biomaterials, 2015, 6, 439-453.	1.8	19
97	The Quest for Anti-inflammatory and Anti-infective Biomaterials in Clinical Translation. Frontiers in Bioengineering and Biotechnology, 2016, 4, 71.	2.0	19
98	Impact of Dyeâ€Protein Interaction and Silver Nanoparticles on Rose Bengal Photophysical Behavior and Protein Photocrosslinking. Photochemistry and Photobiology, 2013, 89, 1433-1441.	1.3	18
99	Biosynthetic corneas: prospects for supplementing the human donor cornea supply. Expert Review of Medical Devices, 2011, 8, 127-130.	1.4	17
100	Biosynthetic alternatives for corneal transplant surgery. Expert Review of Ophthalmology, 2020, 15, 129-143.	0.3	16
101	Fucoidan-Mimetic Glycopolymers as Tools for Studying Molecular and Cellular Responses in Human Blood Platelets. Macromolecular Bioscience, 2017, 17, 1600257.	2.1	15
102	3D Corneal Shape After Implantation of a Biosynthetic Corneal Stromal Substitute. , 2016, 57, 2355.		14
103	Plant Recombinant Human Collagen Type I Hydrogels for Corneal Regeneration. Regenerative Engineering and Translational Medicine, 2022, 8, 269-283.	1.6	14
104	Anti-microbiological and Anti-infective Activities of Silver. Engineering Materials, 2015, , 127-146.	0.3	13
105	Thermo-rheological responsive microcapsules for time-dependent controlled release of human mesenchymal stromal cells. Biomaterials Science, 2017, 5, 2241-2250.	2.6	13
106	Collagen analogs with phosphorylcholine are inflammation-suppressing scaffolds for corneal regeneration from alkali burns in mini-pigs. Communications Biology, 2021, 4, 608.	2.0	13
107	Midkine and secondary neurulation. Teratology, 1997, 55, 213-223.	1.7	12
108	Application of Chitosanâ€Based Biomaterials for Blood Vessel Regeneration. Macromolecular Symposia, 2010, 297, 138-146.	0.4	12

#	Article	IF	CITATIONS
109	Fabrication of a Human Recombinant Collagen-Based Corneal Substitute Using Carbodiimide Chemistry. Methods in Molecular Biology, 2013, 1014, 157-164.	0.4	11
110	Improved antiviral properties of chain end lipophilic fucoidan-mimetic glycopolymers synthesized by RAFT polymerization. European Polymer Journal, 2018, 98, 285-294.	2.6	11
111	Effect of Surgical Technique on Corneal Implant Performance. Translational Vision Science and Technology, 2014, 3, 6.	1.1	10
112	Plasma surface modification and characterization of collagenâ€based artificial cornea for enhanced epithelialization. Journal of Applied Polymer Science, 2007, 106, 2056-2064.	1.3	9
113	Effect of Storage Temperature on Structure and Function of Cultured Human Oral Keratinocytes. PLoS ONE, 2015, 10, e0128306.	1.1	9
114	Skin Regeneration, Repair, and Reconstruction. BioMed Research International, 2015, 2015, 1-1.	0.9	9
115	Activation of dendritic cells by crosslinked collagen hydrogels (artificial corneas) varies with their composition. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1528-1543.	1.3	9
116	TGFâ€Î²1â€activated type 2 dendritic cells promote wound healing and induce fibroblasts to express tenascin c following corneal fullâ€thickness hydrogel transplantation. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1507-1517.	1.3	9
117	Corneal Regenerative Medicine: Corneal Substitutes for Transplantation. , 2008, , 37-53.		8
118	Storage Temperature Alters the Expression of Differentiation-Related Genes in Cultured Oral Keratinocytes. PLoS ONE, 2016, 11, e0152526.	1.1	8
119	Tissue Harvesting Site and Culture Medium Affect Attachment, Growth, and Phenotype of Ex Vivo Expanded Oral Mucosal Epithelial Cells. Scientific Reports, 2017, 7, 674.	1.6	7
120	Regenerative Medicine in the Cornea. , 2008, , 1060-1071.		6
121	Artificial Cornea. , 2010, , 128-134.		6
122	Riboflavin–UV-A Crosslinking for Fixation of Biosynthetic Corneal Collagen Implants. Cornea, 2015, 34, 544-549.	0.9	6
123	Mesenchymal stem cell therapy for retro-corneal membrane – A clinical challenge in full-thickness transplantation of biosynthetic corneal equivalents. Acta Biomaterialia, 2017, 64, 346-356.	4.1	6
124	Optimal neural differentiation and extension of hybrid neuroblastoma cells (NDC) for nerve-target evaluations using a multifactorial approach. Toxicology in Vitro, 2010, 24, 567-577.	1.1	5
125	Design of xanthone propionate photolabile protecting group releasing acyclovir for the treatment of ocular herpes simplex virus. Photochemical and Photobiological Sciences, 2012, 11, 539-547.	1.6	5
126	Optimization of Storage Temperature for Retention of Undifferentiated Cell Character of Cultured Human Epidermal Cell Sheets. Scientific Reports, 2017, 7, 8206.	1.6	5

#	Article	IF	CITATIONS
127	Electron-Beam Irradiated Recombinant Human Collagen-Phosphorylcholine Corneal Implants Retain Pro-Regeneration Capacity. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
128	Regenerative Medicine in the Cornea. , 2019, , 1115-1129.		4
129	In situ Tissue Regeneration in the Cornea from Bench to Bedside. Cells Tissues Organs, 2021, , 1-21.	1.3	4
130	Collagen-based bioengineered substitutes of donor corneal allograft implantation: assessment and hypotheses. Medical Hypothesis, Discovery, and Innovation in Ophthalmology, 2012, 1, 10-3.	0.4	4
131	Corneal tissue engineering versus synthetic artificial corneas. , 2010, , 134-149.		3
132	Regenerative Medicine in the Cornea. Current Ophthalmology Reports, 2017, 5, 187-192.	0.5	3
133	Molecular rotors as reporters for viscosity of solutions of collagen like peptides. Physical Chemistry Chemical Physics, 2021, 23, 24545-24549.	1.3	3
134	Tissue Engineering of the Cornea. , 2005, , 413-423.		3
135	Nanoengineering the surface of corneal implants: towards functional anti-microbial and biofilm materials. RSC Advances, 2020, 10, 23675-23681.	1.7	2
136	Synthesis and Application of Collagens for Assembling a Corneal Implant. Methods in Molecular Biology, 2020, 2145, 169-183.	0.4	2
137	Biomaterials-Enabled Regenerative Medicine in Corneal Applications. , 2013, , 557-580.		2
138	Regenerative Medicine in the Cornea. , 2011, , 911-924.		2
139	Epithelial Cell Culture. , 2002, , 131-140.		2
140	Cornea. , 2002, , 927-941.		2
141	Highly elastic epoxy cross-linked collagen hydrogels for corneal tissue engineering. Acta Ophthalmologica, 2012, 90, 0-0.	0.6	2
142	A Liquid Hydrogel to Restore Long Term Corneal Integrity After Perforating and Non-Perforating Trauma in Feline Eyes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 773294.	2.0	2
143	Whose Naughty or Nice: Electrophysiological Screening of Cells for Use in Tissue-Engineered Corneas. , 2000, 1, 115-120.		1
144	Corrigendum to "Corneal Regeneration Following Implantation of a Biomimetic Tissue-Engineered Substitute― Clinical and Translational Science, 2014, 7, 347-347.	1.5	1

#	Article	IF	CITATIONS
145	BIOMIMETIC REGENERATION OF CORNEAL TISSUE. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 1069-1088.	0.1	1
146	Theranostic Contact Lens for Modulation and Detection of Viral Infection Richard Newell. Procedia Technology, 2017, 27, 16.	1.1	1
147	Ocular applications of bioresorbable polymers—from basic research to clinical trials. , 2017, , 497-523.		1
148	Artificial Corneasâ~†. , 2017, , .		1
149	Non-toxic chemically crosslinked collagen hydrogels for cell delivery. Journal of Molecular and Cellular Cardiology, 2018, 124, 104.	0.9	1
150	Bioengineered Corneas Entering the Clinical Realm. Reference Series in Biomedical Engineering, 2021, , 557-587.	0.1	1
151	Midkine and secondary neurulation. Teratology, 1997, 55, 213-223.	1.7	1
152	Biomaterials-Enabled Regenerative Medicine in Corneal Applications. , 2016, , 97-122.		1
153	Next generation corneal implants as alternative to high risk donor transplantation. Acta Ophthalmologica, 2014, 92, 0-0.	0.6	1
154	Corneal Implantation with Collagen-Copolymer Matrices. Key Engineering Materials, 2005, 288-289, 389-392.	0.4	0
155	Correction: Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications. Journal of Materials Chemistry B, 2017, 5, 5284-5284.	2.9	0
156	Stem Cell Therapy and Regenerative Medicine in the Cornea. Fundamental Biomedical Technologies, 2018, , 149-171.	0.2	0
157	Response to Letter to Editor "Comment on "Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants―by Jangamreddy JR et al.― Acta Biomaterialia, 2019, 97, 692-693.	4.1	Ο
158	AB022. Biosynthetic implants for corneal regeneration in patients at high risk of rejecting donor transplantation. Annals of Eye Science, 0, 4, AB022-AB022.	1.1	0
159	Human Corneal Equivalents for In Vitro Testing. , 2003, , .		Ο
160	Corneal Cell and Nerve Regeneration promoted by Biosynthetic Implants. Acta Ophthalmologica, 2011, 89, 0-0.	0.6	0
161	Corneal Stromal Mesenchymal Stem Cells for Corneal Stroma Reconstruction. Acta Ophthalmologica, 2011, 89, 0-0.	0.6	Ο
162	In vivo integrity of intra-corneal bioengineered discs in rabbit models. Acta Ophthalmologica, 2013, 91, 0-0.	0.6	0

#	Article	IF	CITATIONS
163	Nanoparticles incorporated collagen hydrogels for sustained release of EGF. Acta Ophthalmologica, 2013, 91, 0-0.	0.6	ο
164	The sustained delivery system of the antiinfection peptide LL37 — a potential new method of treatment of ocular infections. Report 3. Antimicrobial activity of LL37 encapsulated in silica nanoparticle. Oftalmologicheskii Zhurnal, 2014, 51, 4-8.	0.0	0
165	Anti-infective peptide LL37 sustained delivery system — a potential novel treatment method of ocular infections. Report 2. Antiviral properties of silica nanoparticle encapsulated LL37. Oftalmologicheskii Zhurnal, 2014, 49, 53-57.	0.0	0
166	Cornea Regeneration as an Alternative to Human Donor Transplantation. European Ophthalmic Review, 2015, 09, 111.	0.3	0
167	Collagen-Based Corneal Substitutes with Incorporated Anti-infective Peptide LL37 Sustalined Deivery System. Oftalmologicheskii Zhurnal, 2015, 53, 110-114.	0.0	0
168	Clonal Growth Capacity and Phenotype of Ex Vivo Expanded Oral Mucosal Tissue. FASEB Journal, 2015, 29, 1029.11.	0.2	0
169	Antiviral properties of collagen-based corneal substitute incorporating sustained delivery system for anti-infective peptide LL37. Oftalmologicheskii Zhurnal, 2015, 57, 42-45.	0.0	0
170	Peptide versus gene therapy: Cathelicidin LL-37 and HSV-1 corneal infection. Acta Ophthalmologica, 2015, 93, n/a-n/a.	0.6	0
171	AB085. E-beam sterilization of recombinant human collagen-phosphorylcholine corneal implants for transplantation. Annals of Eye Science, 0, 3, AB085-AB085.	1.1	0
172	AB020. 3D scaffolds for optic nerve regeneration. Annals of Eye Science, 0, 3, AB020-AB020.	1.1	0
173	Nanoparticles for Cornea Therapeutic Applications: Treating Herpes Simplex Viral Infections. , 2019, , 147-160.		0
174	Bioengineered Corneas Entering the Clinical Realm. , 2020, , 1-31.		0
175	Tissue Engineered Models for In Vitro Studies. , 2009, , 759-772.		О