Carmen Rossini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7766141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	When a Tritrophic Interaction Goes Wrong to the Third Level: Xanthoxylin From Trees Causes the Honeybee Larval Mortality in Colonies Affected by the River Disease. Journal of Chemical Ecology, 2021, 47, 777-787.	0.9	0
2	Effects of Synthetic Acaricides and Nosema ceranae (Microsporidia: Nosematidae) on Molecules Associated with Chemical Communication and Recognition in Honey Bees. Veterinary Sciences, 2020, 7, 199.	0.6	8
3	Phenolic Fingerprinting, Antioxidant, and Deterrent Potentials of Persicaria maculosa Extracts. Molecules, 2020, 25, 3054.	1.7	7
4	Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. PLoS ONE, 2020, 15, e0241666.	1.1	5
5	Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. , 2020, 15, e0241666.		0
6	Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. , 2020, 15, e0241666.		0
7	Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. , 2020, 15, e0241666.		0
8	Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. , 2020, 15, e0241666.		0
9	Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. , 2020, 15, e0241666.		0
10	Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. , 2020, 15, e0241666.		0
11	Response of Diaphorina citri (Hemiptera: Liviidae) to volatiles characteristic of preferred citrus hosts. Arthropod-Plant Interactions, 2019, 13, 367-374.	0.5	11
12	Chemical Composition, Antimicrobial Activity, and Mode of Action of Essential Oils against <i>Paenibacillus larvae</i> , Etiological Agent of American Foulbrood on <i>Apis mellifera</i> . Chemistry and Biodiversity, 2017, 14, e1600382.	1.0	27
13	Potential botanical pesticides from Asteraceae essential oils for tomato production: Activity against whiteflies, plants and bees. Industrial Crops and Products, 2017, 109, 686-692.	2.5	19
14	Oral administration of essential oils and main components: Study on honey bee survival and <i>Nosema ceranae</i> development. Journal of Apicultural Research, 2017, 56, 616-624.	0.7	17
15	Chemical profile of the cutaneous gland secretions from male pampas deer (Ozotoceros bezoarticus) Tj ETQq	1 1 0,7843	14 rgBT /Ovei
16	Differential anti-insect activity of natural products isolated from Dodonaea viscosa Jacq. (Sapindaceae). Journal of Plant Protection Research, 2015, 55, 172-178.	1.0	11
17	Differential Deterrent Activity of Natural Products Isolated from <i>Allophylus edulis</i> (Sapindaceae). Advances in Biological Chemistry, 2014, 04, 168-179.	0.2	9
18	Essential oil from Eupatorium buniifolium leaves as potential varroacide. Parasitology Research, 2013, 112, 3389-3400.	0.6	19

CARMEN ROSSINI

#	Article	IF	CITATIONS
19	Differential activity against aphid settling of flavones obtained from Clytostoma callistegioides (Bignoniaceae). Industrial Crops and Products, 2013, 44, 618-621.	2.5	4
20	Chemical Modification Produces Species-Specific Changes in Cucurbitacin Antifeedant Effect. Journal of Agricultural and Food Chemistry, 2013, 61, 5534-5539.	2.4	11
21	Simaroubaceae and Picramniaceae as potential sources of botanical pesticides. Industrial Crops and Products, 2013, 44, 600-602.	2.5	13
22	A Male Aggregation Pheromone in the Bronze Bug,Thaumastocoris peregrinus(Thaumastocoridae). Psyche: Journal of Entomology, 2012, 2012, 1-7.	0.4	8
23	Essential oils from Asteraceae as potential biocontrol tools for tomato pests and diseases. Phytochemistry Reviews, 2012, 11, 339-350.	3.1	47
24	Limonoids from Melia azedarach with Deterrent Activity against Insects. Natural Products Journal, 2012, 2, 36-44.	0.1	7
25	Synthesis and field evaluation of synthetic blends of the sex pheromone of Crocidosema aporema (Lepidoptera: Tortricidae) in soybean. Journal of the Brazilian Chemical Society, 2012, 23, 1997-2002.	0.6	1
26	Origin of Epilachna paenulata defensive alkaloids: Incorporation of [1-13C]-sodium acetate and [methyl-2H3]-stearic acid. Journal of Insect Physiology, 2012, 58, 110-115.	0.9	3
27	Plant essential oils as potential control agents of varroatosis. Phytochemistry Reviews, 2011, 10, 227-244.	3.1	23
28	Formate Analogs as Antagonists of the Sex Pheromone of the Honeydew Moth, Cryptoblabes gnidiella: Electrophysiological, Behavioral and Field Evidence. Journal of Chemical Ecology, 2010, 36, 1234-1240.	0.9	10
29	Clytostoma callistegioides (Bignoniaceae) wax extract with activity on aphid settling. Phytochemistry, 2010, 71, 2052-2057.	1.4	22
30	Reproductive behaviour of Crocidosema (=Epinotia) aporema (Walsingham) (Lepidoptera: Tortricidae): temporal pattern of female calling and mating. Neotropical Entomology, 2010, 39, 324-329.	0.5	8
31	Bignoniaceae Metabolites as Semiochemicals. Molecules, 2010, 15, 7090-7105.	1.7	20
32	Screening of Uruguayan plants for deterrent activity against insects. Industrial Crops and Products, 2009, 29, 235-240.	2.5	29
33	Biparental Endowment of Endogenous Defensive Alkaloids in Epilachna paenulata. Journal of Chemical Ecology, 2009, 35, 1-7.	0.9	17
34	Sex Pheromone of the Bud Borer Epinotia aporema: Chemical Identification and Male Behavioral Response. Journal of Chemical Ecology, 2009, 35, 349-354.	0.9	1
35	Enantiospecific synthesis and insect feeding activity of sulfur-containing cyclitols. Carbohydrate Research, 2009, 344, 44-51.	1.1	24
36	First record of l-quebrachitol in Allophylus edulis (Sapindaceae). Carbohydrate Research, 2008, 343, 2699-2700.	1.1	34

CARMEN ROSSINI

#	Article	IF	CITATIONS
37	Plant extracts and their components as potential control agents against human head lice. Phytochemistry Reviews, 2007, 7, 51-63.	3.1	24
38	Chemical defense of the ladybird beetle Epilachna paenulata. Chemoecology, 2006, 16, 179-184.	0.6	19
39	Chemical defense of an opilionid (Acanthopachylus aculeatus). Journal of Experimental Biology, 2004, 207, 1313-1321.	0.8	52
40	Mimicry: imitative depiction of discharged defensive secretion on carapace of an opilionid. Chemoecology, 2004, 14, 5-7.	0.6	5
41	Chemical defense: incorporation of diet-derived pyrrolizidine alkaloid into the integumental scales of a moth (Utetheisa ornatrix). Chemoecology, 2003, 13, 199-205.	0.6	9
42	Precopulatory assessment of male quality in an arctiid moth (Utetheisa ornatrix): hydroxydanaidal is the only criterion of choice. Behavioral Ecology and Sociobiology, 2001, 49, 283-288.	0.6	67
43	Fate of an alkaloidal nuptial gift in the moth Utetheisa ornatrix: systemic allocation for defense of self by the receiving female. Journal of Insect Physiology, 2001, 47, 639-647.	0.9	24
44	Chemical defense of an earwig (Doru taeniatum). Chemoecology, 2000, 10, 81-87.	0.6	19
45	Essential Oils from Leaves ofSchinus molleandS. lentiscifoliusof Uruguayan Origin. Journal of Essential Oil Research, 1996, 8, 71-73.	1.3	20
46	Uruguayan Essential Oils. Part III. Composition of the Volatile Fraction of Lemon Essential Oil. Journal of Essential Oil Research, 1995, 7, 25-37.	1.3	7
47	Comparative Study of the Leaf Oils ofPsidium luridumandPsidium incanum. Journal of Essential Oil Research, 1994, 6, 513-515.	1.3	6
48	Citrus Essential Oils of Uruguay. Part I. Composition of Oils of Some Varieties of Mandarin. Journal of Essential Oil Research, 1992, 4, 265-272.	1.3	16
49	Bioactive Natural Products from Sapindaceae Deterrent and Toxic Metabolites Against Insects. , 0, , .		4
50	Plant protection for a sustainable agriculture. International Journal of Pest Management, 0, , 1-2.	0.9	0