Tim J Arciszewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/776613/publications.pdf

Version: 2024-02-01

933447 888059 22 301 10 17 citations g-index h-index papers 22 22 22 234 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Current knowledge of seepage from oil sands tailings ponds and its environmental influence in northeastern Alberta. Science of the Total Environment, 2019, 686, 968-985.	8.0	44
2	Using adaptive processes and adverse outcome pathways to develop meaningful, robust, and actionable environmental monitoring programs. Integrated Environmental Assessment and Management, 2017, 13, 877-891.	2.9	37
3	Development of an adaptive monitoring framework for longâ€term programs: An example using indicators of fish health. Integrated Environmental Assessment and Management, 2015, 11, 701-718.	2.9	31
4	USE OF PULSEâ€AMPLITUDEâ€MODULATED FLUORESCENCE TO ASSESS THE PHYSIOLOGICAL STATUS OF <i>CLADOPHORA</i> SP. ALONG A WATER QUALITY GRADIENT ¹ . Journal of Phycology, 2008, 44, 1604-1613.	2.3	20
5	Using normal ranges for interpreting results of monitoring and tiering to guide future work: A case study of increasing polycyclic aromatic compounds in lake sediments from the Cold Lake oil sands (Alberta, Canada) described in Korosi etÂal. (2016). Environmental Pollution, 2017, 231, 1215-1222.	7.5	16
6	The biology and ecology of slimy sculpin: A recipe for effective environmental monitoring. Facets, 2018, 3, 103-127.	2.4	16
7	An Adaptive Environmental Effects Monitoring Framework for Assessing the Influences of Liquid Effluents on Benthos, Water, and Sediments in Aquatic Receiving Environments. Integrated Environmental Assessment and Management, 2018, 14, 552-566.	2.9	15
8	Increased size and relative abundance of migratory fishes observed near the Athabasca oil sands. Facets, 2017, 2, 833-858.	2.4	15
9	Developing and applying control charts to detect changes in water chemistry parameters measured in the Athabasca River near the oil sands: A tool for surveillance monitoring. Environmental Toxicology and Chemistry, 2018, 37, 2296-2311.	4.3	14
10	Overview of Existing Science to Inform Oil Sands Process Water Release: A Technical Workshop Summary. Integrated Environmental Assessment and Management, 2019, 15, 519-527.	2.9	14
11	A critical review of the ecological status of lakes and rivers from Canada's oil sands region. Integrated Environmental Assessment and Management, 2022, 18, 361-387.	2.9	12
12	An integrated knowledge synthesis of regional ambient monitoring in Canada's oil sands. Integrated Environmental Assessment and Management, $2021, \ldots$	2.9	11
13	Understanding the Chronic Impacts of Oil Refinery Wastewater Requires Consideration of Sediment Contributions to Toxicity. Archives of Environmental Contamination and Toxicology, 2014, 66, 19-31.	4.1	10
14	Developing Triggers for Environmental Effects Monitoring Programs for Troutâ€Perch in the Lower Athabasca River (Canada). Environmental Toxicology and Chemistry, 2019, 38, 1890-1901.	4.3	10
15	Statistical tools for water quality assessment and monitoring in river ecosystems – a scoping review and recommendations for data analysis. Water Quality Research Journal of Canada, 2022, 57, 40-57.	2.7	10
16	Potential Influence of Sewage Phosphorus and Wet and Dry Deposition Detected in Fish Collected in the Athabasca River North of Fort McMurray. Environments - MDPI, 2021, 8, 14.	3.3	6
17	Principles and Challenges for Multi-Stakeholder Development of Focused, Tiered, and Triggered, Adaptive Monitoring Programs for Aquatic Environments. Diversity, 2019, 11, 155.	1.7	5
18	Longâ€Term Studies of Fish Health before and after the Closure of a Bleached Kraft Pulp Mill in Northern Ontario, Canada. Environmental Toxicology and Chemistry, 2021, 40, 162-176.	4.3	5

#	Article	IF	CITATIONS
19	Exploring the Influence of Industrial and Climatic Variables on Communities of Benthic Macroinvertebrates Collected in Streams and Lakes in Canada's Oil Sands Region. Environments - MDPI, 2021, 8, 123.	3.3	4
20	Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators Measured in a Stream in Canada's Oil Sands Region. Environments - MDPI, 2022, 9, 73.	3.3	3
21	Improving monitoring of fish health in the oil sands region using regularization techniques and water quality variables. Science of the Total Environment, 2022, 811, 152301.	8.0	2
22	Regional and Longâ€Term Analyses of Stable Isotopes of Fish and Invertebrates Show Evidence of the Closure of a Pulp Mill and the Influence of Additional Stressors. Environmental Toxicology and Chemistry, 2020, 39, 1207-1218.	4.3	1