Cinthia Alegre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7765703/publications.pdf

Version: 2024-02-01

45 papers

1,292 citations

257101 24 h-index 35 g-index

46 all docs

46 does citations

times ranked

46

1634 citing authors

#	Article	IF	CITATIONS
1	Influence of Nitrogen and Sulfur Doping of Carbon Xerogels on the Performance and Stability of Counter Electrodes in Dye Sensitized Solar Cells. Catalysts, 2022, 12, 264.	1.6	8
2	Effect of 1-octanethiol as an electrolyte additive on the performance of the iron-air battery electrodes. Journal of Solid State Electrochemistry, 2021, 25, 225-230.	1.2	5
3	Emerging carbon nanostructures in electrochemical processes. , 2021, , 353-388.		3
4	Biomass waste-derived nitrogen and iron co-doped nanoporous carbons as electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2021, 387, 138490.	2.6	23
5	Electrocatalysis of Oxygen on Bifunctional Nickelâ€Cobaltite Spinel. ChemElectroChem, 2020, 7, 124-130.	1.7	27
6	TowardÂmore efficient and stable bifunctional electrocatalysts for oxygen electrodes using FeCo2O4/carbon nanofiber prepared by electrospinning. Materials Today Energy, 2020, 18, 100508.	2.5	25
7	Corrosion behavior of tantalum coatings on AISI 316L stainless steel substrate for bipolar plates of PEM fuel cells. International Journal of Hydrogen Energy, 2020, 45, 20679-20691.	3.8	53
8	Evaluation of the corrosion resistance of Ni(P)Cr coatings for bipolar plates by electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 2020, 45, 20632-20646.	3.8	20
9	Assessment of the durability of low-cost Al bipolar plates for High Temperature PEM fuel cells. International Journal of Hydrogen Energy, 2019, 44, 12748-12759.	3.8	29
10	Improving the stability and discharge capacity of nanostructured Fe2O3/C anodes for iron-air batteries and investigation of 1-octhanethiol as an electrolyte additive. Electrochimica Acta, 2019, 318, 625-634.	2.6	14
11	Single cell induced starvation in a high temperature proton exchange membrane fuel cell stack. Applied Energy, 2019, 250, 1176-1189.	5.1	24
12	Electrospun carbon nanofibers loaded with spinel-type cobalt oxide as bifunctional catalysts for enhanced oxygen electrocatalysis. Journal of Energy Storage, 2019, 23, 269-277.	3.9	46
13	Carbon xerogels electrochemical oxidation and correlation with their physico-chemical properties. Carbon, 2019, 144, 382-394.	5. 4	21
14	NiCo-loaded carbon nanofibers obtained by electrospinning: Bifunctional behavior as air electrodes. Renewable Energy, 2018, 125, 250-259.	4.3	36
15	A Comparison of Pd/C, Perovskite, and Ni-Fe Hexacyanoferrate Bifunctional Oxygen Catalysts, at Different Loadings and Catalyst Layer Thicknesses on an Oxygen Gas Diffusion Electrode. Journal of the Electrochemical Society, 2018, 165, A1254-A1262.	1.3	9
16	Carbon-supported Pd and Pd-Co cathode catalysts for direct methanol fuel cells (DMFCs) operating with high methanol concentration. Journal of Electroanalytical Chemistry, 2018, 808, 464-473.	1.9	40
17	Bifunctional oxygen electrode based on a perovskite/carbon composite for electrochemical devices. Journal of Electroanalytical Chemistry, 2018, 808, 412-419.	1.9	37
18	Titanium–tantalum oxide as a support for Pd nanoparticles for the oxygen reduction reaction in alkaline electrolytes. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	11

#	Article	IF	CITATIONS
19	A Rechargeable, Aqueous Iron Air Battery with Nanostructured Electrodes Capable of High Energy Density Operation. Journal of the Electrochemical Society, 2017, 164, A1148-A1157.	1.3	43
20	Enhanced durability of a cost-effective perovskite-carbon catalyst for the oxygen evolution and reduction reactions in alkaline environment. International Journal of Hydrogen Energy, 2017, 42, 28063-28069.	3.8	12
21	A combination of CoO and Co nanoparticles supported on electrospun carbon nanofibers as highly stable air electrodes. Journal of Power Sources, 2017, 364, 101-109.	4.0	60
22	N-Doped Carbon Xerogels as Pt Support for the Electro-Reduction of Oxygen. Materials, 2017, 10, 1092.	1.3	31
23	Pd supported on Ti-suboxides as bifunctional catalyst for air electrodes of metal-air batteries. International Journal of Hydrogen Energy, 2016, 41, 19579-19586.	3.8	23
24	Sulfurized carbon xerogels as Pt support with enhanced activity for fuel cell applications. Applied Catalysis B: Environmental, 2016, 192, 260-267.	10.8	46
25	A high-performance, bifunctional oxygen electrode catalysed with palladium and nickel-iron hexacyanoferrate. Electrochimica Acta, 2016, 206, 127-133.	2.6	25
26	Carbon Nanofibers as Advanced Pd Catalyst Supports for the Air Electrode of Alkaline Metal–Air Batteries. ChemPlusChem, 2015, 80, 1384-1388.	1.3	20
27	Investigation of Supported Pd-Based Electrocatalysts for the Oxygen Reduction Reaction: Performance, Durability and Methanol Tolerance. Materials, 2015, 8, 7997-8008.	1.3	30
28	Influence of the Synthesis Method for Pt Catalysts Supported on Highly Mesoporous Carbon Xerogel and Vulcan Carbon Black on the Electro-Oxidation of Methanol. Catalysts, 2015, 5, 392-405.	1.6	27
29	Tailoring carbon xerogels' properties to enhance catalytic activity of Pt catalysts towards methanol oxidation. International Journal of Hydrogen Energy, 2015, 40, 14736-14745.	3.8	15
30	Investigation of the activity and stability of Pd-based catalysts towards the oxygen reduction (ORR) and evolution reactions (OER) in iron–air batteries. RSC Advances, 2015, 5, 25424-25427.	1.7	39
31	Carbon-based catalysts: Synthesis and applications. Comptes Rendus Chimie, 2015, 18, 1229-1241.	0.2	44
32	A nanostructured bifunctional Pd/C gas-diffusion electrode for metal-air batteries. Electrochimica Acta, 2015, 174, 508-515.	2.6	41
33	Carbon supports for the catalytic dehydrogenation of liquid organic hydrides as hydrogen storage and delivery system. International Journal of Hydrogen Energy, 2014, 39, 4109-4115.	3.8	37
34	Towards new generation fuel cell electrocatalysts based on xerogel–nanofiber carbon composites. Journal of Materials Chemistry A, 2014, 2, 13713.	5,2	33
35	Towards an optimal synthesis route for the preparation of highly mesoporous carbon xerogel-supported Pt catalysts for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2014, 147, 947-957.	10.8	48
36	Platinum Ruthenium Catalysts Supported on Carbon Xerogel for Methanol Electroâ€Oxidation: Influence of the Catalyst Synthesis Method. ChemCatChem, 2013, 5, 3770-3780.	1.8	20

#	Article	IF	CITATIONS
37	Oxygen-Functionalized Highly Mesoporous Carbon Xerogel Based Catalysts for Direct Methanol Fuel Cell Anodes. Journal of Physical Chemistry C, 2013, 117, 13045-13058.	1.5	43
38	PtRu Nanoparticles Deposited by the Sulfite Complex Method on Highly Porous Carbon Xerogels: Effect of the Thermal Treatment. Catalysts, 2013, 3, 744-756.	1.6	11
39	Nanostructured Carbon Materials as Supports in the Preparation of Direct Methanol Fuel Cell Electrocatalysts. Catalysts, 2013, 3, 671-682.	1.6	15
40	Influence of Synthesis pH on Textural Properties of Carbon Xerogels as Supports for Pt/CXs Catalysts for Direct Methanol Fuel Cells. International Journal of Electrochemistry, 2012, 2012, 1-9.	2.4	1
41	Tailoring Synthesis Conditions of Carbon Xerogels towards Their Utilization as Pt-Catalyst Supports for Oxygen Reduction Reaction (ORR). Catalysts, 2012, 2, 466-489.	1.6	33
42	Influence of support's oxygen functionalization on the activity of Pt/carbon xerogels catalysts for methanol electro-oxidation. International Journal of Hydrogen Energy, 2012, 37, 7180-7191.	3.8	44
43	Pt and PtRu electrocatalysts supported on carbon xerogels for direct methanol fuel cells. Journal of Power Sources, 2011, 196, 4226-4235.	4.0	59
44	TiO2 as textural promoter on high loaded Ni catalysts for methane decomposition. International Journal of Hydrogen Energy, 2008, 33, 3320-3329.	3.8	58
45	Nitrogen Doped and Functionalized Carbon Materials as Supports for Catalysts in Electro-Oxidation of Methanol. Advances in Science and Technology, 0, , .	0.2	3