Yuji Goto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7765457/publications.pdf

Version: 2024-02-01

38720 30894 11,076 131 50 102 citations h-index g-index papers 134 134 134 9999 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3095-103.	3.3	1,215
2	BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Research, 2018, 46, W315-W322.	6.5	771
3	Mechanism of acid-induced folding of proteins. Biochemistry, 1990, 29, 3480-3488.	1.2	610
4	Trifluoroethanol-induced Stabilization of the α-Helical Structure of β-Lactoglobulin: Implication for Non-hierarchical Protein Folding. Journal of Molecular Biology, 1995, 245, 180-194.	2.0	451
5	Conformational states in .betalactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry, 1989, 28, 945-952.	1.2	447
6	Classification of Acid Denaturation of Proteins: Intermediates and Unfolded States. Biochemistry, 1994, 33, 12504-12511.	1.2	405
7	Clustering of Fluorine-Substituted Alcohols as a Factor Responsible for Their Marked Effects on Proteins and Peptides. Journal of the American Chemical Society, 1999, 121, 8427-8433.	6.6	367
8	Mapping the core of the \hat{l}^2 2-microglobulin amyloid fibril by H/D exchange. Nature Structural Biology, 2002, 9, 332-336.	9.7	310
9	Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14446-14451.	3.3	256
10	Group additive contributions to the alcohol-induced α-helix formation of melittin: implication for the mechanism of the alcohol effects on proteins 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 275, 365-378.	2.0	242
11	3D structure of amyloid protofilaments of beta2-microglobulin fragment probed by solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18119-18124.	3.3	224
12	Direct Observation of A \hat{I}^2 Amyloid Fibril Growth and Inhibition. Journal of Molecular Biology, 2004, 344, 757-767.	2.0	221
13	Low Concentrations of Sodium Dodecyl Sulfate Induce the Extension of β2-Microglobulin-Related Amyloid Fibrils at a Neutral pHâ€. Biochemistry, 2004, 43, 11075-11082.	1.2	185
14	Phase diagram for acidic conformational states of apomyoglobin. Journal of Molecular Biology, 1990, 214, 803-805.	2.0	162
15	Critical Balance of Electrostatic and Hydrophobic Interactions Is Required for Î ² 2-Microglobulin Amyloid Fibril Growth and Stability. Biochemistry, 2005, 44, 1288-1299.	1.2	162
16	Formation of Ni ₃ C Nanocrystals by Thermolysis of Nickel Acetylacetonate in Oleylamine: Characterization Using Hard X-ray Photoelectron Spectroscopy. Chemistry of Materials, 2008, 20, 4156-4160.	3.2	162
17	Ultrasonication-induced Amyloid Fibril Formation of \hat{I}^2 2-Microglobulin. Journal of Biological Chemistry, 2005, 280, 32843-32848.	1.6	153
18	Glycosaminoglycans Enhance the Trifluoroethanol-Induced Extension of Â2-Microglobulin-Related Amyloid Fibrils at a Neutral pH. Journal of the American Society of Nephrology: JASN, 2004, 15, 126-133.	3.0	143

#	Article	IF	Citations
19	Guanidine Hydrochloride-induced Folding of Proteins. Journal of Molecular Biology, 1993, 231, 180-184.	2.0	140
20	Direct Measurement of the Thermodynamic Parameters of Amyloid Formation by Isothermal Titration Calorimetry. Journal of Biological Chemistry, 2004, 279, 55308-55314.	1.6	131
21	Direct Observation of Amyloid Fibril Growth, Propagation, and Adaptation. Accounts of Chemical Research, 2006, 39, 663-670.	7.6	128
22	Thermodynamic Stability of the Molten Globule States of Apomyoglobin. Journal of Molecular Biology, 1995, 250, 223-238.	2.0	122
23	Ultrasonication-dependent production and breakdown lead to minimum-sized amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11119-11124.	3.3	117
24	Investigation of a Peptide Responsible for Amyloid Fibril Formation of \hat{l}^2 2-Microglobulin by Achromobacter Protease I. Journal of Biological Chemistry, 2002, 277, 1310-1315.	1.6	116
25	Amyloid Fibril Formation in the Context of Full-length Protein. Journal of Biological Chemistry, 2003, 278, 47016-47024.	1.6	112
26	Dissolution of Â2-Microglobulin Amyloid Fibrils by Dimethylsulfoxide. Journal of Biochemistry, 2003, 134, 159-164.	0.9	105
27	Parkinson's disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17963-17969.	3.3	103
28	BeStSel: webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Research, 2022, 50, W90-W98.	6.5	103
29	Mechanism by Which the Amyloid-like Fibrils of a β2-Microglobulin Fragment Are Induced by Fluorine-substituted Alcohols. Journal of Molecular Biology, 2006, 363, 279-288.	2.0	100
30	Heat-induced Conversion of \hat{I}^2 -Microglobulin and Hen Egg-white Lysozyme into Amyloid Fibrils. Journal of Molecular Biology, 2007, 372, 981-991.	2.0	93
31	The role of disulfide bond in the amyloidogenic state of \hat{l}^2 2-microglobulin studied by heteronuclear NMR. Protein Science, 2009, 11, 2218-2229.	3.1	91
32	Principal component analysis of the pH-dependent conformational transitions of bovine \hat{I}^2 -lactoglobulin monitored by heteronuclear NMR. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15346-15351.	3.3	87
33	The Intrachain Disulfide Bond of Â2-Microglobulin Is Not Essential for the Immunoglobulin Fold at Neutral pH, but Is Essential for Amyloid Fibril Formation at Acidic pH. Journal of Biochemistry, 2002, 131, 45-52.	0.9	86
34	Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6654-6659.	3.3	82
35	Structure, Folding Dynamics, and Amyloidogenesis of D76N \hat{I}^2 2-Microglobulin. Journal of Biological Chemistry, 2013, 288, 30917-30930.	1.6	80
36	Small Liposomes Accelerate the Fibrillation of Amyloid β (1–40). Journal of Biological Chemistry, 2015, 290, 815-826.	1.6	78

#	Article	IF	CITATIONS
37	Mechanism of the conformational transition of melittin. Biochemistry, 1992, 31, 732-738.	1.2	76
38	Synchrotron FTIR micro-spectroscopy for structural analysis of Lewy bodies in the brain of Parkinson's disease patients. Scientific Reports, 2015, 5, 17625.	1.6	75
39	Cold Denaturation of αâ€Synuclein Amyloid Fibrils. Angewandte Chemie - International Edition, 2014, 53, 7799-7804.	7.2	72
40	Anion and pH-dependent conformational transition of an amphiphilic polypeptide. Journal of Molecular Biology, 1991, 218, 387-396.	2.0	70
41	Ultrasonication-Dependent Acceleration of Amyloid Fibril Formation. Journal of Molecular Biology, 2011, 412, 568-577.	2.0	66
42	Critical role of interfaces and agitation on the nucleation of $\hat{Al^2}$ amyloid fibrils at low concentrations of $\hat{Al^2}$ monomers. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 986-995.	1.1	64
43	Conformational stability of amyloid fibrils of \hat{l}^22 -microglobulin probed by guanidine-hydrochloride-induced unfolding. FEBS Letters, 2004, 576, 313-319.	1.3	62
44	Seeding-dependent Maturation of \hat{l}^2 2-Microglobulin Amyloid Fibrils at Neutral pH. Journal of Biological Chemistry, 2005, 280, 12012-12018.	1.6	62
45	Amyloid Nucleation Triggered by Agitation of \hat{l}^2 sub>2-Microglobulin under Acidic and Neutral pH Conditions. Biochemistry, 2008, 47, 2650-2660.	1.2	61
46	Measurement of amyloid formation by turbidity assayâ€"seeing through the cloud. Biophysical Reviews, 2016, 8, 445-471.	1.5	60
47	Effects of ammonium sulfate on the unfolding and refolding of the variable and constant fragments of an immunoglobulin light chain. Biochemistry, 1988, 27, 1670-1677.	1.2	59
48	Supersaturation-limited and Unlimited Phase Transitions Compete to Produce the Pathway Complexity in Amyloid Fibrillation. Journal of Biological Chemistry, 2015, 290, 18134-18145.	1.6	58
49	Revisiting supersaturation as a factor determining amyloid fibrillation. Current Opinion in Structural Biology, 2016, 36, 32-39.	2.6	57
50	Main-chain Dominated Amyloid Structures Demonstrated by the Effect of High Pressure. Journal of Molecular Biology, 2005, 352, 941-951.	2.0	55
51	A Comprehensive Model for Packing and Hydration for Amyloid Fibrils of \hat{l}^2 2-Microglobulin. Journal of Biological Chemistry, 2009, 284, 2169-2175.	1.6	52
52	Reversible Heat-Induced Dissociation of \hat{l}^2 (sub>2-Microglobulin Amyloid Fibrils. Biochemistry, 2011, 50, 3211-3220.	1.2	52
53	Kinetically Controlled Thermal Response of \hat{l}^2 2-Microglobulin Amyloid Fibrils. Journal of Molecular Biology, 2005, 352, 700-711.	2.0	49
54	Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions. Analytical Biochemistry, 2016, 498, 78-94.	1.1	48

#	Article	IF	Citations
55	Dimethylsulfoxide-quenched hydrogen/deuterium exchange method to study amyloid fibril structure. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1886-1899.	1.4	46
56	Charge repulsion in the conformational stability of melittin. Biochemistry, 1992, 31, 11908-11914.	1.2	45
57	Supersaturation-limited Amyloid Fibrillation of Insulin Revealed by Ultrasonication. Journal of Biological Chemistry, 2014, 289, 18228-18238.	1.6	45
58	Model membrane size-dependent amyloidogenesis of Alzheimer's amyloid- \hat{l}^2 peptides. Physical Chemistry Chemical Physics, 2017, 19, 16257-16266.	1.3	42
59	Lysophospholipids induce the nucleation and extension of Â2-microglobulin-related amyloid fibrils at a neutral pH. Nephrology Dialysis Transplantation, 2008, 23, 3247-3255.	0.4	41
60	Polymorphism of \hat{l}^2 2-Microglobulin Amyloid Fibrils Manifested by Ultrasonication-enhanced Fibril Formation in Trifluoroethanol. Journal of Biological Chemistry, 2012, 287, 22827-22837.	1.6	40
61	High-throughput Analysis of Ultrasonication-forced Amyloid Fibrillation Reveals the Mechanism Underlying the Large Fluctuation in the Lag Time. Journal of Biological Chemistry, 2014, 289, 27290-27299.	1.6	39
62	Nucleus factory on cavitation bubble for amyloid \hat{l}^2 fibril. Scientific Reports, 2016, 6, 22015.	1.6	39
63	Breakdown of supersaturation barrier links protein folding to amyloid formation. Communications Biology, 2021, 4, 120.	2.0	39
64	A multiâ€pathway perspective on protein aggregation: Implications for control of the rate and extent of amyloid formation. FEBS Letters, 2015, 589, 672-679.	1.3	38
65	Solubility and Supersaturation-Dependent Protein Misfolding Revealed by Ultrasonication. Langmuir, 2014, 30, 1845-1854.	1.6	37
66	Salt-induced formations of partially folded intermediates and amyloid fibrils suggests a common underlying mechanism. Biophysical Reviews, 2018, 10, 493-502.	1.5	37
67	Acceleration of the depolymerization of amyloid \hat{l}^2 fibrils by ultrasonication. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2480-2485.	1.1	36
68	Molecular interactions in the formation and deposition of \hat{l}^2 ₂ -microglobulin-related amyloid fibrils. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2005, 12, 15-25.	1.4	35
69	Growth of \hat{I}^2 2-microglobulin-related amyloid fibrils by non-esterified fatty acids at a neutral pH. Biochemical Journal, 2008, 416, 307-315.	1.7	35
70	The Monomer–Seed Interaction Mechanism in the Formation of the β2-Microglobulin Amyloid Fibril Clarified by Solution NMR Techniques. Journal of Molecular Biology, 2012, 422, 390-402.	2.0	35
71	A common mechanism underlying amyloid fibrillation and protein crystallization revealed by the effects of ultrasonication. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2640-2646.	1.1	35
72	Possible mechanisms of polyphosphate-induced amyloid fibril formation of \hat{l}^2 (sub>2-microglobulin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12833-12838.	3.3	35

#	Article	IF	Citations
73	Heparin-dependent aggregation of hen egg white lysozyme reveals two distinct mechanisms of amyloid fibrillation. Journal of Biological Chemistry, 2017, 292, 21219-21230.	1.6	33
74	Membrane-induced initial structure of α-synuclein control its amyloidogenesis on model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 757-766.	1.4	33
75	Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils. International Journal of Molecular Sciences, 2021, 22, 4349.	1.8	33
76	Aggregation-phase diagrams of \hat{I}^2 2-microglobulin reveal temperature and salt effects on competitive formation of amyloids versus amorphous aggregates. Journal of Biological Chemistry, 2018, 293, 14775-14785.	1.6	32
77	Structural stability of amyloid fibrils of \hat{l}^2 2-microglobulin in comparison with its native fold. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1753, 64-75.	1.1	30
78	Mechanism of Lysophosphatidic Acid-Induced Amyloid Fibril Formation of \hat{l}^2 ₂ -Microglobulin <i>in Vitro</i> under Physiological Conditions. Biochemistry, 2009, 48, 5689-5699.	1.2	29
79	Ultrafast propagation of β-amyloid fibrils in oligomeric cloud. Scientific Reports, 2014, 4, 6960.	1.6	29
80	Ultrasonication-based rapid amplification of \hat{l}_{\pm} -synuclein aggregates in cerebrospinal fluid. Scientific Reports, 2019, 9, 6001.	1.6	28
81	Ultrasonication: An Efficient Agitation for Accelerating the Supersaturation-Limited Amyloid Fibrillation of Proteins. Japanese Journal of Applied Physics, 2013, 52, 07HA01.	0.8	27
82	Heat-Triggered Conversion of Protofibrils into Mature Amyloid Fibrils of β2-Microglobulinâ€. Biochemistry, 2007, 46, 3286-3293.	1.2	26
83	Amorphous Aggregation of Cytochrome <i>c</i> with Inherently Low Amyloidogenicity Is Characterized by the Metastability of Supersaturation and the Phase Diagram. Langmuir, 2016, 32, 2010-2022.	1.6	22
84	Heparinâ€induced amyloid fibrillation of β ₂ â€microglobulin explained by solubility and a supersaturationâ€dependent conformational phase diagram. Protein Science, 2017, 26, 1024-1036.	3.1	22
85	Exothermic Effects Observed upon Heating of \hat{I}^2 2-Microglobulin Monomers in the Presence of Amyloid Seeds. Biochemistry, 2006, 45, 8760-8769.	1.2	21
86	Nanocrystals of zirconia- and ceria-based solid electrolytes: Syntheses and properties. Science and Technology of Advanced Materials, 2007, 8, 524-530.	2.8	21
87	Seed-Dependent Deposition Behavior of \hat{A}^2 Peptides Studied with Wireless Quartz-Crystal-Microbalance Biosensor. Analytical Chemistry, 2011, 83, 4982-4988.	3.2	21
88	The Molten Globule of \hat{I}^2 2-Microglobulin Accumulated at pH 4 and Its Role in Protein Folding. Journal of Molecular Biology, 2013, 425, 273-291.	2.0	21
89	The Antibody Light-Chain Linker Is Important for Domain Stability and Amyloid Formation. Journal of Molecular Biology, 2015, 427, 3572-3586.	2.0	21
90	Ultrasonication-dependent formation and degradation of \hat{l}_{\pm} -synuclein amyloid fibrils. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 209-217.	1.1	21

#	Article	IF	Citations
91	The amyloid fibrils of the constant domain of immunoglobulin light chain. FEBS Letters, 2010, 584, 3348-3353.	1.3	20
92	A Stable Mutant Predisposes Antibody Domains to Amyloid Formation through Specific Non-Native Interactions. Journal of Molecular Biology, 2016, 428, 1315-1332.	2.0	20
93	Drastic acceleration of fibrillation of insulin by transient cavitation bubble. Ultrasonics Sonochemistry, 2017, 36, 206-211.	3.8	20
94	Heating during agitation of \hat{l}^2 2-microglobulin reveals that supersaturation breakdown is required for amyloid fibril formation at neutral pH. Journal of Biological Chemistry, 2019, 294, 15826-15835.	1.6	20
95	Direct observation of minimumâ€sized amyloid fibrils using solution NMR spectroscopy. Protein Science, 2010, 19, 2347-2355.	3.1	19
96	Kinetic Intermediates of \hat{I}^2 2-Microglobulin Fibril Elongation Probed by Pulse-Labeling H/D Exchange Combined with NMR Analysis. Journal of Molecular Biology, 2011, 405, 851-862.	2.0	19
97	Amyloid Formation of α-Synuclein Based on the Solubility- and Supersaturation-Dependent Mechanism. Langmuir, 2020, 36, 4671-4681.	1.6	18
98	Isoelectric point-amyloid formation of α-synuclein extends the generality of the solubility and supersaturation-limited mechanism. Current Research in Structural Biology, 2020, 2, 35-44.	1.1	17
99	A Residue-specific Shift in Stability and Amyloidogenicity of Antibody Variable Domains. Journal of Biological Chemistry, 2014, 289, 26829-26846.	1.6	15
100	Elongation of amyloid fibrils through lateral binding of monomers revealed by total internal reflection fluorescence microscopy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1881-1888.	1.1	14
101	Supersaturation-Limited and Unlimited Phase Spaces Compete to Produce Maximal Amyloid Fibrillation near the Critical Micelle Concentration of Sodium Dodecyl Sulfate. Langmuir, 2015, 31, 9973-9982.	1.6	14
102	Polyphenolâ€solubility alters amyloid fibril formation of αâ€synuclein. Protein Science, 2021, 30, 1701-1713.	3.1	14
103	Two-step screening method to identify α-synuclein aggregation inhibitors for Parkinson's disease. Scientific Reports, 2022, 12, 351.	1.6	14
104	Thermal Response with Exothermic Effects of \hat{l}^2 2-Microglobulin Amyloid Fibrils and Fibrillation. Journal of Molecular Biology, 2009, 389, 584-594.	2.0	13
105	Isolation of short peptide fragments from α-synuclein fibril core identifies a residue important for fibril nucleation: A possible implication for diagnostic applications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 2077-2087.	1.1	13
106	Heat-Induced Aggregation of Hen Ovalbumin Suggests a Key Factor Responsible for Serpin Polymerization. Biochemistry, 2018, 57, 5415-5426.	1.2	13
107	Dialysis-related amyloidosis associated with a novel \hat{l}^2 (sub>2-microglobulin variant. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2021, 28, 42-49.	1.4	13
108	Disaggregation Behavior of Amyloid \hat{l}^2 Fibrils by Anthocyanins Studied by Total-Internal-Reflection-Fluorescence Microscopy Coupled with a Wireless Quartz-Crystal Microbalance Biosensor. Analytical Chemistry, 2021, 93, 11176-11183.	3.2	13

#	Article	IF	Citations
109	Synthesis of CeO[sub 2], ZrO[sub 2] Nanocrystals, and Core-Shell-Type Nanocomposites. Journal of the Electrochemical Society, 2006, 153, A2269.	1.3	12
110	Optimized sonoreactor for accelerative amyloid-fibril assays through enhancement of primary nucleation and fragmentation. Ultrasonics Sonochemistry, 2021, 73, 105508.	3.8	12
111	A Two-Step Refolding of Acid-Denatured Microbial Transglutaminase Escaping from the Aggregation-Prone Intermediate. Biochemistry, 2011, 50, 10390-10398.	1.2	11
112	Recognizing and analyzing variability in amyloid formation kinetics: Simulation and statistical methods. Analytical Biochemistry, 2016, 510, 56-71.	1.1	11
113	Time-Resolved Observation of Evolution of Amyloid- \hat{l}^2 Oligomer with Temporary Salt Crystals. Journal of Physical Chemistry Letters, 2020, 11, 6176-6184.	2.1	11
114	Inorganic polyphosphate potentiates lipopolysaccharide-induced macrophage inflammatory response. Journal of Biological Chemistry, 2020, 295, 4014-4023.	1.6	11
115	altımg="si0006.gif" overflow="scroll" > <mml:mi mathvariant="normal" > A < /mml:mi > <mml:msub> <mml:mrow> <mml:mi> β < /mml:mi > </mml:mi></mml:mrow> <mml:mrow> peptide on ultrasonically formed <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si0007.gif" overflow="scroll" > <mml:mi< th=""><th><mml:mn: 5.3</mml:mn: </th><th>110</th></mml:mi<></mml:math></mml:mrow></mml:msub></mml:mi 	<mml:mn: 5.3</mml:mn: 	110
116	mathyariant="normal">As/mmlani> smmlansub> smmlanio> smmlanio> smmlani> l3 s/mm. Diosensors and Mechanisms of Ultrasonically Induced Fibrillation of Amyloid β sub> 1â€"40 sub> Peptides. Japanese Journal of Applied Physics, 2013, 52, 07HE10.	0.8	10
117	Half-Time Heat Map Reveals Ultrasonic Effects on Morphology and Kinetics of Amyloidogenic Aggregation Reaction. ACS Chemical Neuroscience, 2021, 12, 3456-3466.	1.7	10
118	Thioflavin T-Silent Denaturation Intermediates Support the Main-Chain-Dominated Architecture of Amyloid Fibrils. Biochemistry, 2016, 55, 3937-3948.	1.2	8
119	Polyphosphates diminish solubility of a globular protein and thereby promote amyloid aggregation. Journal of Biological Chemistry, 2019, 294, 15318-15329.	1.6	8
120	Polyphosphates induce amyloid fibril formation of \hat{l} ±-synuclein in concentration-dependent distinct manners. Journal of Biological Chemistry, 2021, 296, 100510.	1.6	8
121	Strong acids induce amyloid fibril formation of \hat{l}^2 2-microglobulin via an anion-binding mechanism. Journal of Biological Chemistry, 2021, 297, 101286.	1.6	6
122	A Back Hydrogen Exchange Procedure via the Acid-Unfolded State for a Large Protein. Biochemistry, 2012, 51, 5564-5570.	1.2	5
123	Optimized Ultrasonic Irradiation Finds Out Ultrastable Aβ _{1–40} Oligomers. Journal of Physical Chemistry B, 2017, 121, 2603-2613.	1.2	5
124	Multistep Changes in Amyloid Structure Induced by Cross-Seeding on a Rugged Energy Landscape. Biophysical Journal, 2021, 120, 284-295.	0.2	5
125	Development of HANABI, an ultrasonication-forced amyloid fibril inducer. Neurochemistry International, 2022, 153, 105270.	1.9	4
126	Amyloid Formation under Complicated Conditions in Which \hat{l}^2 ₂ -Microglobulin Coexists with Its Proteolytic Fragments. Biochemistry, 2019, 58, 4925-4934.	1.2	3

Үијі Сото

#	Article	IF	CITATIONS
127	Pathogenic D76N Variant of \hat{l}^2 2-Microglobulin: Synergy of Diverse Effects in Both the Native and Amyloid States. Biology, 2021, 10, 1197.	1.3	3
128	Nucleation–fibrillation dynamics of Aβ ₁₋₄₀ peptides on liquid–solid surface studied by total-internal-reflection fluorescence microscopy coupled with quartz-crystal microbalance biosensor. Japanese Journal of Applied Physics, 2015, 54, 07HE01.	0.8	2
129	Pathway Dependence of the Formation and Development of Prefibrillar Aggregates in Insulin B Chain. Molecules, 2022, 27, 3964.	1.7	2
130	Acceleration of amyloid fibril formation by multichannel sonochemical reactor. Japanese Journal of Applied Physics, 2022, 61, SG1002.	0.8	1
131	Linking Protein Folding to Amyloid Formation. Seibutsu Butsuri, 2021, 61, 358-365.	0.0	0