Henning JÃ, rgensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7765243/publications.pdf

Version: 2024-02-01

74 papers 5,878 citations

36 h-index

101384

71 g-index

74 all docs

74 docs citations

times ranked

74

5666 citing authors

#	Article	IF	Citations
1	Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining, 2007, 1, 119-134.	1.9	894
2	Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnology for Biofuels, 2009, 2, 11.	6.2	504
3	Liquefaction of lignocellulose at high-solids concentrations. Biotechnology and Bioengineering, 2007, 96, 862-870.	1.7	444
4	Cell wall structural changes in wheat straw pretreated for bioethanol production. Biotechnology for Biofuels, 2008, 1, 5.	6.2	342
5	Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme and Microbial Technology, 2007, 40, 888-895.	1.6	291
6	Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnology for Biofuels, 2012, 5, 26.	6.2	203
7	Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?. Biotechnology and Bioengineering, 2014, 111, 59-68.	1.7	183
8	Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Scientific Reports, 2015, 5, 18561.	1.6	180
9	Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnology for Biofuels, 2014, 7, 64.	6.2	165
10	Cellulase Inhibition by High Concentrations of Monosaccharides. Journal of Agricultural and Food Chemistry, 2014, 62, 3800-3805.	2.4	148
11	Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance. Enzyme and Microbial Technology, 2006, 38, 381-390.	1.6	112
12	Cellulose–water interactions during enzymatic hydrolysis as studied by time domain NMR. Cellulose, 2008, 15, 703-710.	2.4	110
13	Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme and Microbial Technology, 2005, 36, 42-48.	1.6	109
14	Determining Yields in High Solids Enzymatic Hydrolysis of Biomass. Applied Biochemistry and Biotechnology, 2009, 156, 127-132.	1.4	107
15	Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme and Microbial Technology, 2003, 32, 851-861.	1.6	102
16	Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO. Green Chemistry, 2015, 17, 2896-2903.	4.6	101
17	Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.) – The impact of lignin relocation and plant tissues on enzymatic accessibility. Bioresource Technology, 2011, 102, 2804-2811.	4.8	92
18	Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme and Microbial Technology, 2003, 32, 606-615.	1.6	91

#	Article	IF	CITATIONS
19	Enzyme recycling in lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining, 2017, 11, 150-167.	1.9	90
20	Adsorption of \hat{l}^2 -glucosidases in two commercial preparations onto pretreated biomass and lignin. Biotechnology for Biofuels, 2013, 6, 165.	6.2	88
21	Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme and Microbial Technology, 2010, 46, 177-184.	1.6	86
22	Screening Genus <i>Penicillium </i> for Producers of Cellulolytic and Xylanolytic Enzymes. Applied Biochemistry and Biotechnology, 2004, 114, 389-402.	1.4	73
23	Effect of Nutrients on Fermentation of Pretreated Wheat Straw at very High Dry Matter Content by Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2009, 153, 44-57.	1.4	73
24	Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes. Biotechnology for Biofuels, 2018 , 11 , 85 .	6.2	61
25	Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw. Biomass and Bioenergy, 2012, 37, 221-228.	2.9	54
26	Production of Ethanol and Feed by High Dry Matter Hydrolysis and Fermentation of Palm Kernel Press Cake. Applied Biochemistry and Biotechnology, 2010, 161, 318-332.	1.4	52
27	PEI detoxification of pretreated spruce for high solids ethanol fermentation. Applied Energy, 2014, 132, 394-403.	5.1	48
28	High-throughput analysis of amino acids in plant materials by single quadrupole mass spectrometry. Plant Methods, 2018, 14, 8.	1.9	47
29	Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen. Applied Microbiology and Biotechnology, 2002, 59, 310-317.	1.7	45
30	Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose. Biotechnology for Biofuels, 2015, 8, 52.	6.2	41
31	Separation and quantification of cellulases and hemicellulases by capillary electrophoresis. Analytical Biochemistry, 2003, 317, 85-93.	1.1	40
32	Lignin Radicals in the Plant Cell Wall Probed by Kerr-Gated Resonance Raman Spectroscopy. Biophysical Journal, 2006, 90, 2978-2986.	0.2	39
33	Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems. Biochemical Engineering Journal, 2017, 117, 41-47.	1.8	39
34	Hydrothermal Liquefaction of Enzymatic Hydrolysis Lignin: Biomass Pretreatment Severity Affects Lignin Valorization. ACS Sustainable Chemistry and Engineering, 2018, 6, 5940-5949.	3.2	39
35	Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: Potential and temperature dependency at high solid processes. Bioresource Technology, 2013, 148, 180-188.	4.8	38
36	High performance separation of xylose and glucose by enzyme assisted nanofiltration. Journal of Membrane Science, 2015, 492, 107-115.	4.1	37

#	Article	IF	CITATIONS
37	An Aspergillus nidulans GH26 endo- \hat{l}^2 -mannanase with a novel degradation pattern on highly substituted galactomannans. Enzyme and Microbial Technology, 2016, 83, 68-77.	1.6	35
38	Assessment of leaf/stem ratio in wheat straw feedstock and impact on enzymatic conversion. GCB Bioenergy, 2014, 6, 90-96.	2.5	32
39	Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw. Bioresource Technology, 2014, 173, 148-158.	4.8	30
40	Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale. Applied Energy, 2015, 159, 188-195.	5.1	30
41	Growth and enzyme production by three Penicillium species on monosaccharides. Journal of Biotechnology, 2004, 109, 295-299.	1.9	29
42	Enzymatic processing of municipal solid waste. Waste Management, 2010, 30, 2497-2503.	3.7	29
43	Preliminary Results on Optimization of Pilot Scale Pretreatment of Wheat Straw Used in Coproduction of Bioethanol and Electricity., 2006, 129-132, 448-460.		28
44	Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 447-456.	1.4	28
45	Highâ€throughput microarray profiling of cell wall polymers during hydrothermal preâ€treatment of wheat straw. Biotechnology and Bioengineering, 2010, 105, 509-514.	1.7	27
46	Toward a sustainable biorefinery using highâ€gravity technology. Biofuels, Bioproducts and Biorefining, 2017, 11, 15-27.	1.9	27
47	Structural and chemical analysis of process residue from biochemical conversion of wheat straw (Triticum aestivum L.) to ethanol. Biomass and Bioenergy, 2013, 56, 572-581.	2.9	26
48	Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks. Biotechnology for Biofuels, 2017, 10, 49.	6.2	25
49	Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing. Biotechnology for Biofuels, 2010, 3, 25.	6.2	24
50	The role of endoglucanase and endoxylanase in liquefaction of hydrothermally pretreated wheat straw. Biotechnology Progress, 2014, 30, 923-931.	1.3	24
51	Structure and enzymatic accessibility of leaf and stem from wheat straw before and after hydrothermal pretreatment. Biotechnology for Biofuels, 2014, 7, 74.	6.2	23
52	Near Infrared Spectroscopy as a Screening Tool for Sugar Release and Chemical Composition of Wheat Straw. Journal of Biobased Materials and Bioenergy, 2010, 4, 378-383.	0.1	23
53	Extractability and digestibility of plant cell wall polysaccharides during hydrothermal and enzymatic degradation of wheat straw (Triticum aestivum L.). Industrial Crops and Products, 2014, 55, 63-69.	2.5	22
54	Improvement of Tryptophan Analysis by Liquid Chromatography-Single Quadrupole Mass Spectrometry Through the Evaluation of Multiple Parameters. Frontiers in Chemistry, 2019, 7, 797.	1.8	22

#	Article	IF	Citations
55	Evaluation of high throughput screening methods in picking up differences between cultivars of lignocellulosic biomass for ethanol production. Biomass and Bioenergy, 2014, 66, 261-267.	2.9	20
56	Enhancing Protein Recovery in Green Biorefineries by Lignosulfonate-Assisted Precipitation. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	18
57	Preliminary Results on Optimization of Pilot Scale Pretreatment of Wheat Straw Used in Coproduction of Bioethanol and Electricity. Applied Biochemistry and Biotechnology, 2006, 130, 447-460.	1.4	18
58	Impact of the fouling mechanism on enzymatic depolymerization of xylan in different configurations of membrane reactors. Separation and Purification Technology, 2017, 178, 154-162.	3.9	16
59	Separation of xylose and glucose using an integrated membrane system for enzymatic cofactor regeneration and downstream purification. Journal of Membrane Science, 2017, 523, 327-335.	4.1	15
60	Membrane separation of enzyme-converted biomass compounds: Recovery of xylose and production of gluconic acid as a value-added product. Separation and Purification Technology, 2018, 194, 73-80.	3.9	15
61	Breeding for dual-purpose wheat varieties using marker–trait associations for biomass yield and quality traits. Theoretical and Applied Genetics, 2019, 132, 3375-3398.	1.8	15
62	Wheat as a dual crop for biorefining: Straw quality parameters and their interactions with nitrogen supply in modern elite cultivars. GCB Bioenergy, 2019, 11, 400-415.	2.5	15
63	Increasing the value of Salicornia bigelovii green biomass grown in a desert environment through biorefining. Industrial Crops and Products, 2021, 160, 113105.	2.5	14
64	Green biorefining: Effect of nitrogen fertilization on protein yield, protein extractability and amino acid composition of tall fescue biomass. Industrial Crops and Products, 2019, 130, 642-652.	2.5	12
65	A new Density Functional Theory (DFT) based method for supporting the assignment of vibrational signatures of mannan and cellulose—Analysis of palm kernel cake hydrolysis by ATR-FT-IR spectroscopy as a case study. Carbohydrate Polymers, 2011, 85, 457-464.	5.1	10
66	The Challenging Measurement of Protein in Complex Biomass-Derived Samples. Applied Biochemistry and Biotechnology, 2014, 172, 87-101.	1.4	10
67	High-performance removal of acids and furans from wheat straw pretreatment liquid by diananofiltration. Separation Science and Technology, 2017, 52, 1901-1912.	1.3	10
68	Ensiling of the pulp fraction after biorefining of grass into pulp and protein juice. Industrial Crops and Products, 2019, 139, 111576.	2.5	10
69	Cellulase Hydrolysis of Unsorted MSW. Applied Biochemistry and Biotechnology, 2011, 165, 1799-1811.	1.4	8
70	The potential for biorefining of triticale to protein and sugar depends on nitrogen supply and harvest time. Industrial Crops and Products, 2020, 149, 112333.	2.5	8
71	Recovery of cellulase activity after ethanol stripping in a novel pilot-scale unit. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 637-646.	1.4	5
72	Test of Efficacy of Cellulases for Biomass Degradation. Methods in Molecular Biology, 2018, 1796, 283-297.	0.4	3

#	Article	IF	CITATIONS
73	Screening Genus Penicillium for Producers of Cellulolytic and Xylanolytic Enzymes. , 2004, , 389-401.		3
74	Residual nitrogen pools in mature winter wheat straw as affected by nitrogen application. Plant and Soil, 2020, 453, 561-575.	1.8	1