Viktor Józsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7765084/publications.pdf

Version: 2024-02-01

758635 610482 38 577 12 24 h-index citations g-index papers 47 47 47 467 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production. Energy Conversion and Management, 2020, 223, 113296.	4.4	137
2	Droplet dynamics and size characterization of high-velocity airblast atomization. International Journal of Multiphase Flow, 2017, 95, 1-11.	1.6	60
3	Recent advancements in catalytic conversion pathways for synthetic jet fuel produced from bioresources. Energy Conversion and Management, 2022, 251, 114974.	4.4	52
4	Thermal analysis of the SMOG-1 PocketQube satellite. Applied Thermal Engineering, 2018, 139, 506-513.	3.0	31
5	Spectroscopic analysis of crude rapeseed oil flame. Fuel Processing Technology, 2015, 139, 61-66.	3.7	30
6	Effect of liquid preheating on high-velocity airblast atomization: From water to crude rapeseed oil. Experimental Thermal and Fluid Science, 2019, 102, 137-151.	1.5	27
7	Stability and emission analysis of crude rapeseed oil combustion. Fuel Processing Technology, 2017, 156, 204-210.	3.7	26
8	Pollutant emission of gaseous and liquid aqueous bioethanol combustion in swirl burners. Energy Conversion and Management, 2017, 149, 896-903.	4.4	22
9	Empirical correlation for spray half cone angle in plain-jet airblast atomizers. Fuel, 2020, 277, 118197.	3.4	19
10	Flame emission spectroscopy measurement of a steam blast and air blast burner. Thermal Science, 2017, 21, 1021-1030.	0.5	19
11	Ultra-low emission combustion of diesel-coconut biodiesel fuels by a mixture temperature-controlled combustion mode. Energy Conversion and Management, 2020, 214, 112908.	4.4	14
12	Mixture temperature-controlled combustion: A revolutionary concept for ultra-low NOX emission. Fuel, 2021, 291, 120200.	3.4	14
13	Evaporation of Renewable Fuels in a Lean Premixed Prevaporized Burner. Periodica Polytechnica, Mechanical Engineering, 2016, 60, 82-88.	0.8	12
14	Dual-Fuel Operation of Biodiesel and Natural Gas in a Model Gas Turbine Combustor. Energy & Samp; Fuels, 2020, 34, 3788-3796.	2.5	12
15	Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization. Processes, 2017, 5, 80.	1.3	11
16	Numerical modeling of distributed combustion without air dilution in a novel ultra-low emission turbulent swirl burner. Physics of Fluids, 2022, 34, .	1.6	11
17	Application of big data analysis technique on high-velocity airblast atomization: Searching for optimum probability density function. Fuel, 2020, 273, 117792.	3.4	10
18	Comparison of volatility characteristics and temperature-dependent density, surface tension, and kinematic viscosity of n-butanol-diesel and ABE-diesel fuel blends. Fuel, 2022, 312, 122909.	3.4	10

#	Article	IF	CITATIONS
19	Distributed combustion of diesel–butanol fuel blends in a mixture temperature-controlled burner. Fuel, 2022, 307, 121840.	3.4	9
20	Dynamics and emission of nearly flameless combustion of waste cooking oil biodiesel in an ultra-low emission non-MILD swirl burner. Fuel, 2022, 319, 123743.	3.4	8
21	Effect of Quarls on the Blowout Stability and Emission of Pollutants of a Liquid-Fueled Swirl Burner. Journal of Engineering for Gas Turbines and Power, 2018, 140, .	0.5	7
22	Correlation analysis of chemiluminescent and pollutant emissions of a liquid-fueled turbulent swirl burner. Journal of the Energy Institute, 2020, 93, 1390-1398.	2.7	6
23	Mixture Temperature-Controlled combustion of different biodiesels and conventional fuels. Energy, 2021, 234, 121219.	4.5	6
24	Investigation of Fuel Atomization with Density Functions. Periodica Polytechnica, Mechanical Engineering, 2017, 62, 33.	0.8	4
25	A Two-Parameter Corresponding States Method for Calculating the Steady-State Evaporation Rate of C2–C9 n-Alkane Droplets in Air for Elevated Pressures and Temperatures. Flow, Turbulence and Combustion, 2021, 107, 283-305.	1.4	4
26	Evaluation of material property estimating methods for n-alkanes, 1-alcohols, and methyl esters for droplet evaporation calculations. Heat and Mass Transfer, 0 , 1 .	1.2	3
27	Application of bioethanol in gas turbines. Periodica Polytechnica, Mechanical Engineering, 2011, 55, 91.	0.8	2
28	Numerical analysis of biogas combustion in a lean premixed swirl burner. , 2019, , .		1
29	Experimental Comparison of Diesel and Crude Rapeseed Oil Combustion in a Swirl Burner. Applied Sciences (Switzerland), 2020, 10, 4907.	1.3	1
30	Sound Pressure Level Analysis of a Liquid-Fueled Lean Premixed Swirl Burner with Various Quarls. Acoustics, 2020, 2, 131-146.	0.8	1
31	Thermal Processes in Vacuum. Power Systems, 2020, , 105-121.	0.3	1
32	Notes on the Solutions of PDE Systems—Duality Between Two Worlds. Power Systems, 2020, , 165-195.	0.3	1
33	Energy management of a "PocketQube" satellite. , 2015, , .		0
34	Wavelet analysis of flame blowout of a liquid-fueled swirl burner with quarls. Noise Control Engineering Journal, 2019, 67, 394-403.	0.2	0
35	Applications in Renewable Energy. Power Systems, 2020, , 43-103.	0.3	0
36	The Way of Problem Solving in Thermal Engineering. Power Systems, 2020, , 1-14.	0.3	0

Viktor Józsa

#	Article	IF	CITATIONS
37	General Aspects of Thermodynamical Modeling. Power Systems, 2020, , 15-42.	0.3	О
38	Nature Knows Better. Power Systems, 2020, , 123-164.	0.3	0