## Paulomi Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/776497/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on<br>Dextrin and Poly( <i>N</i> -isopropylacrylamide) for in Vitro/in Vivo Controlled Drug Release. ACS<br>Applied Materials & Interfaces, 2015, 7, 14338-14351. | 8.0  | 117       |
| 2  | Dextrin cross linked with poly(HEMA): a novel hydrogel for colon specific delivery of ornidazole. RSC<br>Advances, 2013, 3, 25340.                                                                                                                          | 3.6  | 105       |
| 3  | Dextrin and Poly(acrylic acid)-Based Biodegradable, Non-Cytotoxic, Chemically Cross-Linked Hydrogel<br>for Sustained Release of Ornidazole and Ciprofloxacin. ACS Applied Materials & Interfaces, 2015, 7,<br>4791-4803.                                    | 8.0  | 105       |
| 4  | Silk Sponges Ornamented with a Placenta-Derived Extracellular Matrix Augment Full-Thickness<br>Cutaneous Wound Healing by Stimulating Neovascularization and Cellular Migration. ACS Applied<br>Materials & Interfaces, 2018, 10, 16977-16991.              | 8.0  | 57        |
| 5  | Dextrin and poly(lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polymer Chemistry, 2016, 7, 2965-2975.                                                                                   | 3.9  | 50        |
| 6  | Investigating the potential of human placenta-derived extracellular matrix sponges coupled with<br>amniotic membrane-derived stem cells for osteochondral tissue engineering. Journal of Materials<br>Chemistry B, 2016, 4, 613-625.                        | 5.8  | 47        |
| 7  | Biocompatible nanogel derived from functionalized dextrin for targeted delivery of doxorubicin hydrochloride to MG 63 cancer cells. Carbohydrate Polymers, 2017, 171, 27-38.                                                                                | 10.2 | 41        |
| 8  | Covalent cross-links in polyampholytic chitosan fibers enhances bone regeneration in a rabbit model.<br>Colloids and Surfaces B: Biointerfaces, 2015, 125, 160-169.                                                                                         | 5.0  | 32        |
| 9  | <l>ln Vitro</l> ALP and Osteocalcin Gene Expression Analysis and In VivoBiocompatibility of<br>N-Methylene Phosphonic Chitosan Nanofibers for Bone Regeneration. Journal of Biomedical<br>Nanotechnology, 2013, 9, 870-879.                                 | 1.1  | 31        |
| 10 | 2,5-Dimethoxy 2,5-dihydrofuran crosslinked chitosan fibers enhance bone regeneration in rabbit femur defects. RSC Advances, 2014, 4, 19516-19524.                                                                                                           | 3.6  | 28        |
| 11 | Development and application of a nanocomposite derived from crosslinked HPMC and Au<br>nanoparticles for colon targeted drug delivery. RSC Advances, 2015, 5, 27481-27490.                                                                                  | 3.6  | 27        |
| 12 | Citrate Cross-Linked Gels with Strain Reversibility and Viscoelastic Behavior Accelerate Healing of Osteochondral Defects in a Rabbit Model. Langmuir, 2014, 30, 8442-8451.                                                                                 | 3.5  | 26        |
| 13 | Effect of alumina, silk and ceria short fibers in reinforcement of Bis-GMA/TEGDMA dental resin.<br>Composites Part B: Engineering, 2015, 70, 238-246.                                                                                                       | 12.0 | 25        |
| 14 | Chitosan Derivatives Cross-Linked with Iodinated 2,5-Dimethoxy-2,5-dihydrofuran for Non-Invasive<br>Imaging. ACS Applied Materials & Interfaces, 2014, 6, 17926-17936.                                                                                      | 8.0  | 21        |
| 15 | Bioinspired 3D porous human placental derived extracellular matrix/silk fibroin sponges for accelerated bone regeneration. Materials Science and Engineering C, 2020, 113, 110990.                                                                          | 7.3  | 20        |
| 16 | Microspheres containing decellularized cartilage induce chondrogenesis <i>in vitro</i> and remain functional after incorporation within a poly(caprolactone) filament useful for fabricating a 3D scaffold. Biofabrication, 2018, 10, 025007.               | 7.1  | 18        |
| 17 | Dual Functionalized Injectable Hybrid Extracellular Matrix Hydrogel for Burn Wounds.<br>Biomacromolecules, 2021, 22, 514-533.                                                                                                                               | 5.4  | 18        |
| 18 | In Situ Iodination Cross-Linking of Silk for Radio-Opaque Antimicrobial Surgical Sutures. ACS<br>Biomaterials Science and Engineering, 2016, 2, 188-196.                                                                                                    | 5.2  | 15        |

Paulomi Ghosh

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Novel pH-responsive graft copolymer based on HPMC and poly(acrylamide) synthesised by microwave irradiation: application in controlled release of ornidazole. Cellulose, 2015, 22, 313-327.             | 4.9 | 14        |
| 20 | Biocompatible amphiphilic microgel derived from dextrin and poly(methyl methacrylate) for dual drugs carrier. Polymer, 2016, 107, 282-291.                                                              | 3.8 | 14        |
| 21 | Dual crosslinked keratin-alginate fibers formed via ionic complexation of amide networks with improved toughness for assembling into braids. Polymer Testing, 2020, 81, 106286.                         | 4.8 | 12        |
| 22 | Strategies toward development of antimicrobial biomaterials for dental healthcare applications.<br>Biotechnology and Bioengineering, 2021, 118, 4590-4622.                                              | 3.3 | 9         |
| 23 | Imidazolium-based ionic liquid–assisted processing of natural biopolymers containing amine/amide<br>functionalities for sustainable fiber production. Materials Today Sustainability, 2021, 14, 100082. | 4.1 | 9         |
| 24 | Novel Process for 3D Printing Decellularized Matrices. Journal of Visualized Experiments, 2019, , .                                                                                                     | 0.3 | 4         |
| 25 | Single-pot biofabrication of living fibers for tissue engineering applications. Journal of Materials<br>Research, 2018, 33, 2019-2028.                                                                  | 2.6 | 1         |