Iulian Petrila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7764812/publications.pdf

Version: 2024-02-01

471371 501076 40 812 17 28 citations h-index g-index papers 40 40 40 933 times ranked all docs docs citations citing authors

#	Article	IF	CITATIONS
1	The Influence of Li+ and K+ Added Cations and Annealing Temperature on the Magnetic and Dielectric Properties of Mg-Zn Ferrite. Materials, 2021, 14, 4916.	1.3	2
2	Effects of sintering temperature on the microstructure, electrical and magnetic characteristics of copper-zinc spinel ferrite with possibility use as humidity sensors. Sensors and Actuators A: Physical, 2021, 332, 113060.	2.0	20
3	Effect of copper substitution on structural, optical and humidity-sensing characteristics of cerium oxide nanoparticles. Journal of Physics and Chemistry of Solids, 2020, 136, 109173.	1.9	13
4	Effect of neodymium stimulation on the dielectric, magnetic and humidity sensing properties of iron oxide nanoparticles. Materials Chemistry and Physics, 2020, 254, 123572.	2.0	11
5	Effect of Vd-doping on dielectric, magnetic and gas sensing properties of nickel ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 16728-16736.	1.1	11
6	A reliable chemiresistive sensor of nickel-doped tin oxide (Ni-SnO ₂) for sensing carbon dioxide gas and humidity. RSC Advances, 2020, 10, 3796-3804.	1.7	30
7	Enhanced humidity sensing properties of Fe-doped CeO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 8815-8824.	1.1	4
8	Effect of Tin Element on the Structural, Optical and Humidity Sensing Properties of Cerium Oxide Nanoparticles. Journal of Electronic Materials, 2019, 48, 7495-7506.	1.0	6
9	Selfâ€doped Nâ€propansulfonic acid polyanilineâ€polyethylene terephthalate film used as active sensor element for humidity or gas detection. Journal of Applied Polymer Science, 2019, 136, 47743.	1.3	2
10	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" overflow="scroll"> <mml:mrow><mml:mi mathvariant="normal">L</mml:mi><mml:mi mathvariant="normal">i</mml:mi><mml:mi mathvariant="normal">C</mml:mi><mml:mi mathvariant="normal">= mathvariant="normal">= mathvariant=</mml:mi></mml:mrow>	1.0	27
11	mathvariant="normal">F <mml:mi (liâ€"nife2o4)="" 18660-18667.<="" 2018,="" 29,="" and="" annealed="" corrosive="" efficientianmidity-serisitive="" electrical="" electronics,="" environments.="" ferrite="" ideal,="" in="" journal="" lithium="" materials="" nanoparticles="" nickel="" of="" real="" response="" science:="" substituted="" td="" under=""><td>1.1</td><td>20</td></mml:mi>	1.1	20
12	Reduced graphene oxide decorated with Fe doped SnO2 nanoparticles for humidity sensor. Applied Surface Science, 2017, 402, 410-417.	3.1	100
13	Linear weighting method and calibration technique with application for temperature estimation in inter weather stations regions. , 2017 , , .		1
14	Construction and deconstruction of checkers game using ICE agent model. , 2016, , .		1
15	Effects of disabled neurons in classical and quantum networks information processing. , 2016, , .		О
16	Microstructure, electrical and humidity sensing properties of light rare earths zirconates. Sensors and Actuators A: Physical, 2016, 247, 156-161.	2.0	20
17	Humidity sensor characteristics and electrical properties of Ni–Zn–Dy ferrite material prepared using different chelating-fuel agents. Journal of Materials Science: Materials in Electronics, 2016, 27, 272-278.	1.1	21
18	Microstructure, electrical and humidity sensor properties of electrospun NiOâ€"SnO2 nanofibers. Sensors and Actuators B: Chemical, 2016, 222, 1024-1031.	4.0	101

#	Article	IF	Citations
19	Humidity sensors applicative characteristics of granularized and porous Bi 2 O 3 thin films prepared by oxygen plasma-assisted pulsed laser deposition. Superlattices and Microstructures, 2015, 77, 276-285.	1.4	28
20	Ni ferrite highly organized as humidity sensors. Materials Chemistry and Physics, 2015, 156, 170-179.	2.0	81
21	Effects of laser beam modulation on all-optical switching phase diagrams in magneto-optical ultrafast storage device. Journal of Computational Electronics, 2015, 14, 627-633.	1.3	10
22	Combined effects of p–n heterojunctions and active surface areas in a composite material dedicated to gas sensing applications. Journal of Materials Science: Materials in Electronics, 2015, 26, 9837-9844.	1.1	4
23	SYNTHESIS AND ELECTRON TRANSPORT PROPERTIES OF SOME NEW 4,7-PHENANTHROLINE DERIVATIVES IN THIN FILMS. Environmental Engineering and Management Journal, 2015, 14, 421-431.	0.2	5
24	Uniformity and correlation test parameters for random numbers generators. , 2014, , .		3
25	Metropolis Monte Carlo analysis of all-optical switching. Computer Physics Communications, 2014, 185, 2874-2878.	3.0	16
26	Electrical properties and humidity sensor characteristics of lead hydroxyapatite material. Applied Surface Science, 2014, 303, 175-179.	3.1	24
27	Effects of Partial Replacement of Iron with Tungsten on Microstructure, Electrical, Magnetic and Humidity Properties of Copper-Zinc Ferrite Material. Journal of Electronic Materials, 2014, 43, 3522-3526.	1.0	29
28	Influence of partial substitution of Fe3+ with W3+ on the microstructure, humidity sensitivity, magnetic and electrical properties of barium hexaferrite. Superlattices and Microstructures, 2014, 70, 46-53.	1.4	34
29	Considerations on the information and entropy of ordinal data. , 2014, , .		2
30	Micromagnetic investigation of all-optical switching. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1495-1498.	0.9	18
31	Influence of thermal treatment on the structure, humidity sensitivity, electrical and magnetic properties of barium–tungsten ferrite. Composites Part B: Engineering, 2013, 51, 106-111.	5.9	23
32	Humidity sensor applicative material based on copper-zinc-tungsten spinel ferrite. Materials Letters, 2013, 108, 129-133.	1.3	46
33	Asymmetries influence on critical curves of the synthetic antiferromagnetic structures in magnetic random access memory. Computational Materials Science, 2012, 51, 122-126.	1.4	5
34	Analytical description of a system of two interacting identical uniaxial ferromagnetic particles. Journal of Applied Physics, 2011, 110, 043923.	1.1	7
35	Direct observation of basal-plane to threading-edge dislocation conversion in 4H-SiC epitaxy. Journal of Applied Physics, 2011, 109, .	1.1	39
36	Analytical ferromagnetic hysterons with various anisotropies. Journal of Applied Physics, 2011, 109, 083937.	1.1	7

Iulian Petrila

#	Article	IF	CITATION
37	Linear and non-linear energy barriers in systems of interacting single-domain ferromagnetic particles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3478-3482.	0.9	11
38	Hysteresis characteristics of an analytical vector hysteron. Physica B: Condensed Matter, 2011, 406, 906-910.	1.3	14
39	Cluster analysis of an Ising–Preisach interacting particle system. Physica B: Condensed Matter, 2011, 406, 2177-2181.	1.3	3
40	Analytical vector generalization of the classical Stoner–Wohlfarth hysteron. Journal of Physics Condensed Matter, 2011, 23, 076002.	0.7	13