Jason W Chin ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/7764647/publications.pdf Version: 2024-02-01 13865 20358 17,169 120 67 116 citations h-index g-index papers 129 129 129 11669 docs citations times ranked citing authors all docs | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , . | 7.1 | 20 | | 2 | Mechanism-based traps enable protease and hydrolase substrate discovery. Nature, 2022, 602, 701-707. | 27.8 | 25 | | 3 | Discovery and Genetic Code Expansion of a Polyethylene Terephthalate (PET) Hydrolase from the Human Saliva Metagenome for the Degradation and Bioâ€Functionalization of PET. Angewandte Chemie - International Edition, 2022, 61, . | 13.8 | 24 | | 4 | Reprogramming the genetic code. Nature Reviews Genetics, 2021, 22, 169-184. | 16.3 | 147 | | 5 | Selective CRAF Inhibition Elicits Transactivation. Journal of the American Chemical Society, 2021, 143, 4600-4606. | 13.7 | 15 | | 6 | Creating custom synthetic genomes in Escherichia coli with REXER and GENESIS. Nature Protocols, 2021, 16, 2345-2380. | 12.0 | 11 | | 7 | Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science, 2021, 372, 1057-1062. | 12.6 | 90 | | 8 | A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design. Nature Chemistry, 2021, 13, 1110-1117. | 13.6 | 38 | | 9 | Precise optical control of gene expression in C elegans using improved genetic code expansion and Cre recombinase. ELife, 2021, 10, . | 6.0 | 11 | | 10 | Cryo-EM structure of MukBEF reveals DNA loop entrapment at chromosomal unloading sites.
Molecular Cell, 2021, 81, 4891-4906.e8. | 9.7 | 49 | | 11 | Engineered triply orthogonal pyrrolysyl–tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids. Nature Chemistry, 2020, 12, 535-544. | 13.6 | 93 | | 12 | Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms. Nature, 2020, 579, 603-608. | 27.8 | 82 | | 13 | Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase–tRNA pairs. Nature
Biotechnology, 2020, 38, 989-999. | 17.5 | 67 | | 14 | Frontispiece: Efficient Phage Display with Multiple Distinct Non-Canonical Amino Acids Using Orthogonal Ribosome-Mediated Genetic Code Expansion. Angewandte Chemie - International Edition, 2019, 58, . | 13.8 | 0 | | 15 | Programmed chromosome fission and fusion enable precise large-scale genome rearrangement and assembly. Science, 2019, 365, 922-926. | 12.6 | 36 | | 16 | Efficient Phage Display with Multiple Distinct Nonâ€Canonical Amino Acids Using Orthogonal Ribosomeâ€Mediated Genetic Code Expansion. Angewandte Chemie, 2019, 131, 10960-10964. | 2.0 | 4 | | 17 | Efficient Phage Display with Multiple Distinct Nonâ€Canonical Amino Acids Using Orthogonal
Ribosomeâ€Mediated Genetic Code Expansion. Angewandte Chemie - International Edition, 2019, 58,
10844-10848. | 13.8 | 41 | | 18 | Total synthesis of Escherichia coli with a recoded genome. Nature, 2019, 569, 514-518. | 27.8 | 346 | | # | Article | IF | Citations | |----|--|------|-----------| | 19 | Frontispiz: Efficient Phage Display with Multiple Distinct Nonâ€Canonical Amino Acids Using
Orthogonal Ribosomeâ€Mediated Genetic Code Expansion. Angewandte Chemie, 2019, 131, . | 2.0 | O | | 20 | Trapping biosynthetic acyl-enzyme intermediates with encoded 2,3-diaminopropionic acid. Nature, 2019, 565, 112-117. | 27.8 | 78 | | 21 | An Evolved <i>Methanomethylophilus alvus</i> Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells. Biochemistry, 2019, 58, 387-390. | 2.5 | 50 | | 22 | Rapid and Efficient Generation of Stable Antibody–Drug Conjugates via an Encoded Cyclopropene and an Inverseâ€Electronâ€Demand Diels–Alder Reaction. Angewandte Chemie, 2018, 130, 2881-2884. | 2.0 | 19 | | 23 | Detecting RNA base methylations in single cells by in situ hybridization. Nature Communications, 2018, 9, 655. | 12.8 | 28 | | 24 | Toward an orthogonal central dogma. Nature Chemical Biology, 2018, 14, 103-106. | 8.0 | 119 | | 25 | Rapid and Efficient Generation of Stable Antibody–Drug Conjugates via an Encoded Cyclopropene and an Inverseâ€Electronâ€Demand Diels–Alder Reaction. Angewandte Chemie - International Edition, 2018, 57, 2831-2834. | 13.8 | 80 | | 26 | Labeling and identifying cell-specific proteomes in the mouse brain. Nature Biotechnology, 2018, 36, 156-159. | 17.5 | 73 | | 27 | Mitotic spindle association of TACC3 requires Auroraâ€Aâ€dependent stabilization of a cryptic αâ€helix.
EMBO Journal, 2018, 37, . | 7.8 | 55 | | 28 | Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12388-E12397. | 7.1 | 31 | | 29 | Controlling orthogonal ribosome subunit interactions enables evolution of new function. Nature, 2018, 564, 444-448. | 27.8 | 79 | | 30 | A conformational sensor based on genetic code expansion reveals an autocatalytic component in EGFR activation. Nature Communications, 2018, 9, 3847. | 12.8 | 29 | | 31 | Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs. Nature Chemistry, 2018, 10, 831-837. | 13.6 | 129 | | 32 | Genetically Encoded Protein Phosphorylation in Mammalian Cells. Cell Chemical Biology, 2018, 25, 1067-1074.e5. | 5.2 | 47 | | 33 | Intracellular antibody signalling is regulated by phosphorylation of the Fc receptor TRIM21. ELife, 2018, 7, . | 6.0 | 57 | | 34 | Mitotic phosphorylation regulates Hsp72 spindle localization by uncoupling ATP binding from substrate release. Science Signaling, 2018, 11 , . | 3.6 | 8 | | 35 | Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing. Nature Methods, 2017, 14, 729-736. | 19.0 | 109 | | 36 | Protein modification via alkyne hydrosilylation using a substoichiometric amount of ruthenium(<scp>ii</scp>) catalyst. Chemical Science, 2017, 8, 3871-3878. | 7.4 | 18 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 37 | Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET. Scientific Reports, 2017, 7, 39841. | 3.3 | 6 | | 38 | Expanding and reprogramming the genetic code. Nature, 2017, 550, 53-60. | 27.8 | 579 | | 39 | Computationally guided discovery of a reactive, hydrophilic trans-5-oxocene dienophile for bioorthogonal labeling. Organic and Biomolecular Chemistry, 2017, 15, 6640-6644. | 2.8 | 37 | | 40 | Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells. Nature Structural and Molecular Biology, 2017, 24, 1155-1163. | 8.2 | 49 | | 41 | Synthesis of Isomeric Phosphoubiquitin Chains Reveals that Phosphorylation Controls Deubiquitinase Activity and Specificity. Cell Reports, 2016, 16, 1180-1193. | 6.4 | 52 | | 42 | Genetic code expansion in the mouse brain. Nature Chemical Biology, 2016, 12, 776-778. | 8.0 | 107 | | 43 | Tagging and Enriching Proteins Enables Cell-Specific Proteomics. Cell Chemical Biology, 2016, 23, 805-815. | 5.2 | 42 | | 44 | Defining synonymous codon compression schemes by genome recoding. Nature, 2016, 539, 59-64. | 27.8 | 133 | | 45 | Photoactivation of Mutant Isocitrate Dehydrogenase 2 Reveals Rapid Cancer-Associated Metabolic and Epigenetic Changes. Journal of the American Chemical Society, 2016, 138, 718-721. | 13.7 | 39 | | 46 | Genetic code expansion in stable cell lines enables encoded chromatin modification. Nature Methods, 2016, 13, 158-164. | 19.0 | 133 | | 47 | Structural and Mechanistic Insights into the Regulation of the Fundamental Rho Regulator RhoGDIα by Lysine Acetylation. Journal of Biological Chemistry, 2016, 291, 5484-5499. | 3.4 | 45 | | 48 | Ribosome Subunit Stapling for Orthogonal Translation in <i>E.</i> â€ <i>coli</i> . Angewandte Chemie, 2015, 127, 12982-12985. | 2.0 | 20 | | 49 | Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nature Chemical Biology, 2015, 11, 496-503. | 8.0 | 189 | | 50 | Selective, rapid and optically switchable regulation of protein function in live mammalian cells. Nature Chemistry, 2015, 7, 554-561. | 13.6 | 136 | | 51 | Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers. Biochemical Journal, 2015, 466, 489-498. | 3.7 | 38 | | 52 | Ubiquitination of the Dishevelled DIX domain blocks its head-to-tail polymerization. Nature Communications, 2015, 6, 6718. | 12.8 | 50 | | 53 | Genetic Code Expansion Enables Live-Cell and Super-Resolution Imaging of Site-Specifically Labeled Cellular Proteins. Journal of the American Chemical Society, 2015, 137, 4602-4605. | 13.7 | 152 | | 54 | Ribosome Subunit Stapling for Orthogonal Translation in <i>E.</i> â€ <i>coli</i> . Angewandte Chemie - International Edition, 2015, 54, 12791-12794. | 13.8 | 61 | | # | Article | IF | Citations | |----|---|------|-----------| | 55 | EGF-dependent re-routing of vesicular recycling switches spontaneous phosphorylation suppression to EGFR signaling. ELife, $2015,4,.$ | 6.0 | 55 | | 56 | Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nature Chemistry, 2014, 6, 393-403. | 13.6 | 233 | | 57 | Concerted, Rapid, Quantitative, and Site-Specific Dual Labeling of Proteins. Journal of the American Chemical Society, 2014, 136, 7785-7788. | 13.7 | 132 | | 58 | Cellular Incorporation of Unnatural Amino Acids and Bioorthogonal Labeling of Proteins. Chemical Reviews, 2014, 114, 4764-4806. | 47.7 | 861 | | 59 | Genetically Encoded Optochemical Probes for Simultaneous Fluorescence Reporting and Light Activation of Protein Function with Two-Photon Excitation. Journal of the American Chemical Society, 2014, 136, 15551-15558. | 13.7 | 137 | | 60 | Efficient Multisite Unnatural Amino Acid Incorporation in Mammalian Cells via Optimized Pyrrolysyl tRNA Synthetase/tRNA Expression and Engineered eRF1. Journal of the American Chemical Society, 2014, 136, 15577-15583. | 13.7 | 216 | | 61 | Conformationally strained trans-cyclooctene with improved stability and excellent reactivity in tetrazine ligation. Chemical Science, 2014, 5, 3770-3776. | 7.4 | 201 | | 62 | Genetic code expansion and bioorthogonal labelling enables cell specific proteomics in an animal. Current Opinion in Chemical Biology, 2014, 21, 154-160. | 6.1 | 28 | | 63 | Bioorthogonal Reactions for Labeling Proteins. ACS Chemical Biology, 2014, 9, 16-20. | 3.4 | 467 | | 64 | Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nature Biotechnology, 2014, 32, 465-472. | 17.5 | 161 | | 65 | Expanding and Reprogramming the Genetic Code of Cells and Animals. Annual Review of Biochemistry, 2014, 83, 379-408. | 11.1 | 425 | | 66 | Strain-promoted sydnone bicyclo-[6.1.0]-nonyne cycloaddition. Chemical Science, 2014, 5, 1742-1744. | 7.4 | 98 | | 67 | Genetically Encoded Light-Activated Transcription for Spatiotemporal Control of Gene Expression and Gene Silencing in Mammalian Cells. Journal of the American Chemical Society, 2013, 135, 13433-13439. | 13.7 | 83 | | 68 | Efficient and Rapid C. elegans Transgenesis by Bombardment and Hygromycin B Selection. PLoS ONE, 2013, 8, e76019. | 2.5 | 66 | | 69 | A different life?. Current Opinion in Chemical Biology, 2012, 16, 243-244. | 6.1 | 2 | | 70 | Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nature Chemistry, 2012, 4, 298-304. | 13.6 | 424 | | 71 | Expanding the genetic code of Drosophila melanogaster. Nature Chemical Biology, 2012, 8, 748-750. | 8.0 | 177 | | 72 | Reprogramming the Genetic Code. Science, 2012, 336, 428-429. | 12.6 | 45 | | # | Article | IF | Citations | |----|--|------|-----------| | 73 | Genetic Encoding of Bicyclononynes and <i>trans</i> -Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions. Journal of the American Chemical Society, 2012, 134, 10317-10320. | 13.7 | 456 | | 74 | Designer proteins: applications of genetic code expansion in cell biology. Nature Reviews Molecular Cell Biology, 2012, 13, 168-182. | 37.0 | 313 | | 75 | Photocontrol of Tyrosine Phosphorylation in Mammalian Cells via Genetic Encoding of Photocaged Tyrosine. Journal of the American Chemical Society, 2012, 134, 11912-11915. | 13.7 | 140 | | 76 | Reprogramming the Genetic Code: From Triplet to Quadruplet Codes. Angewandte Chemie - International Edition, 2012, 51, 2288-2297. | 13.8 | 83 | | 77 | Light-Activated Kinases Enable Temporal Dissection of Signaling Networks in Living Cells. Journal of the American Chemical Society, 2011, 133, 2124-2127. | 13.7 | 143 | | 78 | Genetically encoding an aliphatic diazirine for protein photocrosslinking. Chemical Science, 2011, 2, 480-483. | 7.4 | 81 | | 79 | Traceless and Site-Specific Ubiquitination of Recombinant Proteins. Journal of the American Chemical Society, 2011, 133, 10708-10711. | 13.7 | 161 | | 80 | Genetically Encoded 1,2-Aminothiols Facilitate Rapid and Site-Specific Protein Labeling via a Bio-orthogonal Cyanobenzothiazole Condensation. Journal of the American Chemical Society, 2011, 133, 11418-11421. | 13.7 | 144 | | 81 | Orthogonal Gene Expression in Escherichia coli. Methods in Enzymology, 2011, 497, 115-134. | 1.0 | 4 | | 82 | Expanding the Genetic Code of an Animal. Journal of the American Chemical Society, 2011, 133, 14196-14199. | 13.7 | 218 | | 83 | Reprogramming the genetic code. EMBO Journal, 2011, 30, 2312-2324. | 7.8 | 27 | | 84 | Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8251-8256. | 7.1 | 81 | | 85 | Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2228-2233. | 7.1 | 124 | | 86 | Genetically Directing É>-N, N-Dimethyl-l-Lysine in Recombinant Histones. Chemistry and Biology, 2010, 17, 1072-1076. | 6.0 | 82 | | 87 | Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature, 2010, 464, 441-444. | 27.8 | 559 | | 88 | Acetylation regulates Cyclophilin A catalysis, immunosuppression and HIV isomerization. Nature Chemical Biology, 2010, 6, 331-337. | 8.0 | 102 | | 89 | Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nature Chemical Biology, 2010, 6, 750-757. | 8.0 | 269 | | 90 | Evolved orthogonal ribosome purification for in vitro characterization. Nucleic Acids Research, 2010, 38, 2682-2691. | 14.5 | 27 | | # | Article | IF | Citations | |-----|---|------|-----------| | 91 | <i>De Novo</i> Generation of Mutually Orthogonal Aminoacyl-tRNA Synthetase/tRNA Pairs. Journal of the American Chemical Society, 2010, 132, 2142-2144. | 13.7 | 79 | | 92 | Expanding the Genetic Code of Yeast for Incorporation of Diverse Unnatural Amino Acids via a Pyrrolysyl-tRNA Synthetase/tRNA Pair. Journal of the American Chemical Society, 2010, 132, 14819-14824. | 13.7 | 187 | | 93 | Genetically Encoded Photocontrol of Protein Localization in Mammalian Cells. Journal of the American Chemical Society, 2010, 132, 4086-4088. | 13.7 | 232 | | 94 | Journal club. Nature, 2009, 457, 239-239. | 27.8 | 0 | | 95 | Genetic Encoding and Labeling of Aliphatic Azides and Alkynes in Recombinant Proteins <i>via</i> a Pyrrolysyl-tRNA Synthetase/tRNA _{CUA} Pair and Click Chemistry. Journal of the American Chemical Society, 2009, 131, 8720-8721. | 13.7 | 285 | | 96 | A Method for Genetically Installing Site-Specific Acetylation in Recombinant Histones Defines the Effects of H3 K56 Acetylation. Molecular Cell, 2009, 36, 153-163. | 9.7 | 453 | | 97 | Genetically Encoding <i>N</i> ^ϵ -Methyl- <scp>I</scp> -lysine in Recombinant Histones. Journal of the American Chemical Society, 2009, 131, 14194-14195. | 13.7 | 151 | | 98 | Synthesis of orthogonal transcription-translation networks. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8477-8482. | 7.1 | 118 | | 99 | Genetically encoding Nε-acetyllysine in recombinant proteins. Nature Chemical Biology, 2008, 4, 232-234. | 8.0 | 530 | | 100 | Genetically Encoding Protein Oxidative Damage. Journal of the American Chemical Society, 2008, 130, 4028-4033. | 13.7 | 104 | | 101 | Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nature Biotechnology, 2007, 25, 770-777. | 17.5 | 272 | | 102 | Functional epitopes at the ribosome subunit interface., 2006, 2, 254-258. | | 30 | | 103 | Modular approaches to expanding the functions of living matter. Nature Chemical Biology, 2006, 2, 304-311. | 8.0 | 69 | | 104 | Programming and engineering biological networks. Current Opinion in Structural Biology, 2006, 16, 551-556. | 5.7 | 34 | | 105 | A genetically encoded fluorescent amino acid. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9785-9789. | 7.1 | 243 | | 106 | A network of orthogonal ribosome·mRNA pairs. , 2005, 1, 159-166. | | 262 | | 107 | Photo-cross-linking interacting proteins with a genetically encoded benzophenone. Nature Methods, 2005, 2, 377-384. | 19.0 | 154 | | 108 | Cellular Logic with Orthogonal Ribosomes. Journal of the American Chemical Society, 2005, 127, 17584-17585. | 13.7 | 78 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 109 | Substrate recognition by the AAA+ chaperone ClpB. Nature Structural and Molecular Biology, 2004, 11, 607-615. | 8.2 | 219 | | 110 | Progress Toward an Expanded Eukaryotic Genetic Code. Chemistry and Biology, 2003, 10, 511-519. | 6.0 | 83 | | 111 | An Expanded Eukaryotic Genetic Code. Science, 2003, 301, 964-967. | 12.6 | 726 | | 112 | Adding Amino Acids with Novel Reactivity to the Genetic Code of Saccharomyces Cerevisiae. Journal of the American Chemical Society, 2003, 125, 11782-11783. | 13.7 | 371 | | 113 | Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11020-11024. | 7.1 | 617 | | 114 | Addition of p-Azido-l-phenylalanine to the Genetic Code of Escherichiacoli. Journal of the American Chemical Society, 2002, 124, 9026-9027. | 13.7 | 655 | | 115 | In Vivo Photocrosslinking with Unnatural Amino Acid Mutagenesis. ChemBioChem, 2002, 3, 1135-1137. | 2.6 | 135 | | 116 | Concerted Evolution of Structure and Function in a Miniature Protein. Journal of the American Chemical Society, 2001, 123, 2929-2930. | 13.7 | 98 | | 117 | Methodology for optimizing functional miniature proteins based on avian pancreatic polypeptide using phage display. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1501-1505. | 2.2 | 34 | | 118 | Design and Evolution of a Miniature Bcl-2 Binding Protein. Angewandte Chemie - International Edition, 2001, 40, 3806-3809. | 13.8 | 95 | | 119 | Foundation Biotechnology Resource Laboratory (Yale University School of Medicine, New Haven, CT) for oligonucleotide and peptide synthesis and amino acid analysis and Professor Jennifer Doudna (Yale University) for use of a Perseptive Voyager-DE (MALDI-TOF) mass spectrometer. We are grateful also to Dr. Junying Yuan and Dr. Alexi Degterev (Harvard Medical School) for a generous gift of | 13.8 | 26 | | 120 | Discovery and Genetic Code Expansion of a Polyethylene Terephthalate (PET) Hydrolase from the Human Saliva Metagenome for the Degradation and Bioâ€Functionalization of PET. Angewandte Chemie, 0, , . | 2.0 | 2 |