Steven R Spurgeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7764350/publications.pdf

Version: 2024-02-01

85 papers

1,135 citations

20 h-index 32 g-index

92 all docs 92 docs citations

times ranked

92

2122 citing authors

#	Article	IF	CITATIONS
1	Towards data-driven next-generation transmission electron microscopy. Nature Materials, 2021, 20, 274-279.	27.5	130
2	Polarization screening-induced magnetic phase gradients at complex oxide interfaces. Nature Communications, 2015, 6, 6735.	12.8	71
3	One-Pot Aqueous Synthesis of Fe and Ag Core/Shell Nanoparticles. Chemistry of Materials, 2010, 22, 6291-6296.	6.7	66
4	Magnetic properties of Co2C and Co3C nanoparticles and their assemblies. Applied Physics Letters, 2012, 101, .	3.3	64
5	Thickness-Dependent Crossover from Charge- to Strain-Mediated Magnetoelectric Coupling in Ferromagnetic/Piezoelectric Oxide Heterostructures. ACS Nano, 2014, 8, 894-903.	14.6	61
6	Influence of LaFeO ₃ Surface Termination on Water Reactivity. Journal of Physical Chemistry Letters, 2017, 8, 1038-1043.	4.6	60
7	Growth of La2Ti2O7 and LaTiO3 thin films using pulsed laser deposition. Journal of Crystal Growth, 2008, 310, 1985-1990.	1.5	41
8	Rapid and flexible segmentation of electron microscopy data using few-shot machine learning. Npj Computational Materials, 2021, 7, .	8.7	37
9	Understanding the Electronic Structure Evolution of Epitaxial LaNi _{1–<i>x</i>} Fe _{<i>x</i>} O ₃ Thin Films for Water Oxidation. Nano Letters, 2021, 21, 8324-8331.	9.1	31
10	Competing Pathways for Nucleation of the Double Perovskite Structure in the Epitaxial Synthesis of La ₂ MnNiO ₆ . Chemistry of Materials, 2016, 28, 3814-3822.	6.7	29
11	Creation and Ordering of Oxygen Vacancies at WO _{3â^'Î} and Perovskite Interfaces. ACS Applied Materials & Distribution (1988) Applied Materials & Distributio	8.0	29
12	Interfaceâ€Induced Polarization in SrTiO ₃ â€LaCrO ₃ Superlattices. Advanced Materials Interfaces, 2016, 3, 1500779.	3.7	28
13	A Mechanistic Understanding of Nonclassical Crystal Growth in Hydrothermally Synthesized Sodium Yttrium Fluoride Nanowires. Chemistry of Materials, 2020, 32, 2753-2763.	6.7	27
14	The effects of core-level broadening in determining band alignment at the epitaxial SrTiO3(001)/ <i>p</i> -Ge(001) heterojunction. Applied Physics Letters, 2017, 110, .	3.3	26
15	Holeâ€Trappingâ€Induced Stabilization of Ni ^{4 +} in SrNiO ₃ /LaFeO ₃ Superlattices. Advanced Materials, 2020, 32, e2005003.	21.0	26
16	Builtâ€In Potential in Fe ₂ O ₃ â€Cr ₂ O ₃ Superlattices for Improved Photoexcited Carrier Separation. Advanced Materials, 2016, 28, 1616-1622.	21.0	24
17	Dynamic interface rearrangement in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>LaFeO</mml:mi><mi .<="" 1,="" 2017,="" heterojunctions.="" materials,="" physical="" review="" td=""><td>ml:2n4n>3<</td><td>/mខង:mn></td></mi></mml:msub></mml:mrow></mml:math>	ml :2n4 n>3<	/m ខង: mn>
18	Measurement Error in Atomic-Scale Scanning Transmission Electron Microscopy—Energy-Dispersive X-Ray Spectroscopy (STEM-EDS) Mapping of a Model Oxide Interface. Microscopy and Microanalysis, 2017, 23, 513-517.	0.4	22

#	Article	IF	CITATIONS
19	Electronic Structure and Band Alignment of LaMnO ₃ /SrTiO ₃ Polar/Nonpolar Heterojunctions. Advanced Materials Interfaces, 2019, 6, 1801428.	3.7	22
20	Damage evolution of ion irradiated defected-fluorite La2Zr2O7 epitaxial thin films. Acta Materialia, 2017, 130, 111-120.	7.9	20
21	Probing the Origin of Interfacial Carriers in SrTiO ₃ â€"LaCrO ₃ Superlattices. Chemistry of Materials, 2017, 29, 1147-1155.	6.7	19
22	Chemical imaging and diffusion of hydrogen and lithium in lithium aluminate. Journal of Nuclear Materials, 2018, 511, 1-10.	2.7	19
23	Nanoscale oxygen defect gradients in UO2+x surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17181-17186.	7.1	17
24	A study of the effect of iron island morphology and interface oxidation on the magnetic hysteresis of Fe-MgO (001) thin film composites. Journal of Applied Physics, 2012, 112, .	2.5	16
25	Oxygen Reduction Electrocatalysis with Epitaxially Grown Spinel MnFe ₂ O ₄ and Fe ₃ O ₄ . ACS Catalysis, 2022, 12, 3577-3588.	11.2	16
26	Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films. Scientific Reports, 2018, 8, 3037.	3.3	15
27	An Automated Scanning Transmission Electron Microscope Guided by Sparse Data Analytics. Microscopy and Microanalysis, 2022, 28, 1611-1621.	0.4	15
28	Asymmetric Lattice Disorder Induced at Oxide Interfaces. Advanced Materials Interfaces, 2020, 7, 1901944.	3.7	13
29	Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films. Applied Physics Letters, 2016, 108, .	3.3	12
30	An all-perovskite <i>p-n</i> junction based on transparent conducting <i>p</i> -La1â^xSrxCrO3 epitaxial layers. Applied Physics Letters, 2017, 111, .	3.3	12
31	Thickness dependent OER electrocatalysis of epitaxial LaFeO ₃ thin films. Journal of Materials Chemistry A, 2022, 10, 1909-1918.	10.3	12
32	Design of a graphical user interface for few-shot machine learning classification of electron microscopy data. Computational Materials Science, 2022, 203, 111121.	3.0	12
33	Effect of structure and composition on the electronic excitation induced amorphization of La2Ti2â^'xZrxO7 ceramics. Scientific Reports, 2019, 9, 8190.	3.3	11
34	Epitaxial growth and atomic arrangement in Fe2CrO4 on crystal symmetry matched (001) MgAl2O4. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 031511.	2.1	10
35	Bulk and Shortâ€Circuit Anion Diffusion in Epitaxial Fe ₂ O ₃ Films Quantified Using Buried Isotopic Tracer Layers. Advanced Materials Interfaces, 2021, 8, 2001768.	3.7	10
36	The role of Nanocartography in the Development of Automated TEM. Microscopy and Microanalysis, 2021, 27, 2986-2987.	0.4	9

#	Article	IF	CITATIONS
37	Chemical and electronic structure analysis of a SrTiO3 (001)/p-Ge (001) hydrogen evolution photocathode. MRS Communications, 2018, 8, 446-452.	1.8	8
38	An Atomic-Scale Understanding of UO ₂ Surface Evolution during Anoxic Dissolution. ACS Applied Materials & Disso	8.0	8
39	Reversible Oxidation Quantified by Optical Properties in Epitaxial Fe2CrO4+Î [*] Films on (001) MgAl2O4. ACS Omega, 2020, 5, 3240-3249.	3.5	7
40	Onset of phase separation in the double perovskite oxide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:nphysical .<="" 2018,="" 97,="" b,="" review="" td=""><td>nn <i>:82</i>2/mm</td><td>ıl:nsn></td></mml:nphysical></mml:msub></mml:mrow></mml:math>	nn <i>:82</i> 2/mm	ıl:n s n>
41	Percolation of Ion-Irradiation-Induced Disorder in Complex Oxide Interfaces. Nano Letters, 2021, 21, 5353-5359.	9.1	6
42	Heterogeneous Twoâ€Phase Pillars in Epitaxial NiFe ₂ O ₄ â€LaFeO ₃ Nanocomposites. Advanced Materials Interfaces, 2017, 4, 1700396.	3.7	5
43	Order-disorder behavior at thin film oxide interfaces. Current Opinion in Solid State and Materials Science, 2020, 24, 100870.	11.5	5
44	Radiation Enhanced Anion Diffusion in Chromia. Journal of Physical Chemistry C, 2021, 125, 27820-27827.	3.1	5
45	Characterization of surface layers formed on DU10Mo ingots after processing steps and high humidity exposure. Journal of Nuclear Materials, 2019, 514, 28-39.	2.7	4
46	Evidence of lithium mobility under neutron irradiation. Journal of Materials Research and Technology, 2021, 14, 475-483.	5.8	4
47	Adatom-Driven Oxygen Intermixing during the Deposition of Oxide Thin Films by Molecular Beam Epitaxy. Nano Letters, 2022, 22, 4963-4969.	9.1	4
48	Electronic and structural properties of single-crystal Jahn–Teller active Co _{1+x} Mn _{2â^'x} O ₄ thin films. Journal of Physics Condensed Matter, 2021, 33, 124002.	1.8	3
49	First-Principles Study of Tritium Trapping in γ-LiAlO ₂ Nanovoids. Journal of Physical Chemistry C, 2022, 126, 5767-5776.	3.1	3
50	Carbonaceous deposits on aluminide coatings in tritium-producing assemblies. Nuclear Materials and Energy, 2020, 25, 100797.	1.3	2
51	Microscopic model for the stacking-fault potential and the exciton wave function in GaAs. Physical Review B, 2020, 101, .	3.2	2
52	Multimodal Imaging of Cation Disorder and Oxygen Deficiency-Mediated Phase Separation in Double Perovskite Oxides. Microscopy and Microanalysis, 2017, 23, 1678-1679.	0.4	1
53	Fast Atomic Diffusion: Bulk and Shortâ€Circuit Anion Diffusion in Epitaxial Fe ₂ O ₃ Films Quantified Using Buried Isotopic Tracer Layers (Adv. Mater.) Tj ETQq1 1 ().7 8.4 314 r	gBIT /Overloc
54	Reply to Comment on "A Mechanistic Understanding of Nonclassical Crystal Growth in Hydrothermally Synthesized Sodium Yttrium Fluoride Nanowires― Chemistry of Materials, 2021, 33, 3862-3864.	6.7	1

#	Article	IF	Citations
55	Incorporation of Ti in epitaxial Fe2TiO4 thin films. Journal of Physics Condensed Matter, 2021, 33, 314004.	1.8	1
56	Influence of Irradiation-Induced Defects on Anion Transport in Epitaxial Cr ₂ O ₃ . Microscopy and Microanalysis, 2021, 27, 2904-2905.	0.4	1
57	Energy Focus: Modified SMP allows high resolution mapping of lithium-ion diffusion. MRS Bulletin, 2010, 35, 836-836.	3.5	О
58	A (111)-ordered Sr ₂ FeRuO ₆ superlattice displays room-temperature magnetic ordering. MRS Bulletin, 2011, 36, 478-478.	3.5	0
59	Nano Focus: IR lasers enable direct patterning on conjugated polymers. MRS Bulletin, 2011, 36, 740-741.	3.5	0
60	Energy Focus: SPM reveals nanoscale understanding of oxygen reactions in fuel cells and batteries. MRS Bulletin, 2011, 36, 741-741.	3.5	0
61	Thin-film heterostructures of Fe-and Co-BaTiO ₃ exhibit interface multiferroicity at room temperature. MRS Bulletin, 2011, 36, 843-845.	3.5	0
62	Room-temperature electrical control of ferromagnetic ordering in cobalt demonstrated. MRS Bulletin, 2011, 36, 953-954.	3.5	0
63	Nano Focus: Functional ferroelectric tunnel-junction memories demonstrated. MRS Bulletin, 2012, 37, 101-102.	3.5	0
64	A Combined STEM-EELS and Neutron Reflectometry Study of Charge- and Strain-Mediated Magnetoelectric Coupling in LSMO/PZT Heterostructures. Microscopy and Microanalysis, 2012, 18, 1912-1913.	0.4	0
65	"Spin bag―model proposed for room-temperature ferromagnetism in Sr ₃ YCo ₄ O _{10+Î′} . MRS Bulletin, 2012, 37, 881-881.	3.5	0
66	Drexel hosts Philly Materials Day. MRS Bulletin, 2012, 37, 888-889.	3.5	0
67	Inverse spin Hall effect observed in silicon. MRS Bulletin, 2012, 37, 186-186.	3.5	0
68	Electric field utilized to locally pin magnetic domain walls. MRS Bulletin, 2013, 38, 598-598.	3.5	0
69	Navy SeaPerch competition spreads STEM awareness. MRS Bulletin, 2013, 38, 780-781.	3.5	0
70	Nano Focus: Superdiffusive electron transport mediates laser-induced demagnetization. MRS Bulletin, 2013, 38, 296-296.	3.5	0
71	Epitaxial strain tunes spintronic behavior of multiferroic BiFeO3. MRS Bulletin, 2013, 38, 529-529.	3.5	0
72	Ferroelectric-like phase transition observed in a metal. MRS Bulletin, 2013, 38, 1002-1002.	3.5	0

#	Article	IF	CITATIONS
73	Energy Focus: Charge-density waves may be competing with superconductivity. MRS Bulletin, 2013, 38, 295-296.	3.5	0
74	"Paper Factory―produces a blend of science and engineering education. MRS Bulletin, 2014, 39, 945-946.	3.5	0
75	SPM scans the chemical landscape of manganite oxides. MRS Bulletin, 2015, 40, 465-466.	3.5	0
76	Multidimensional Analysis of Nanoscale Phase Separation in Complex Materials Systems. Microscopy and Microanalysis, 2016, 22, 282-283.	0.4	0
77	Single chip integrates transistors and photonic components. MRS Bulletin, 2016, 41, 180-182.	3.5	0
78	Nanoscale Quantification of Interstitial Oxygen in Hyperstoichiometric UO2+x. Microscopy and Microanalysis, 2019, 25, 1598-1599.	0.4	0
79	Atomic-Scale Mechanisms for Interfacial Radiation Damage Resistance of Thin Film Oxide Heterostructures. Microscopy and Microanalysis, 2019, 25, 1562-1563.	0.4	0
80	Correlative Imaging of Phase Separation in Fe2TiO4 Thin Films Prepared by Conventional Ga and Xe Plasma FIB Processing. Microscopy and Microanalysis, 2020, 26, 186-187.	0.4	0
81	Probing the Unique Radiation Damage Response of Oxide Interfaces Using Multi-modal STEM Imaging, Diffraction, and Spectroscopy. Microscopy and Microanalysis, 2020, 26, 1666-1667.	0.4	0
82	Quantitative STEM Imaging and Multislice Simulation of Stacking Fault Defects for Exciton Trapping in GaAs. Microscopy and Microanalysis, 2020, 26, 2822-2823.	0.4	0
83	Examining Defect Creation at Interfaces in Electrocatalytically Cycled LaFeO3-SrTiO3 Thin Films. Microscopy and Microanalysis, 2021, 27, 1178-1179.	0.4	0
84	Evolution of Defect States from Different Starting States in La1-xSrxFeO3 Thin Films. Microscopy and Microanalysis, 2021, 27, 2906-2908.	0.4	0
85	Rapid and Flexible Few Shot Learning-Based Classification of Scanning Transmission Electron Microscopy Data. Microscopy and Microanalysis, 2021, 27, 1618-1619.	0.4	О