Viviana Ritacco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7763486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clinical and Experimental Immunology, 2003, 133, 30-37.	2.6	401
2	Use of various genetic markers in differentiation of Mycobacterium bovis strains from animals and humans and for studying epidemiology of bovine tuberculosis. Journal of Clinical Microbiology, 1994, 32, 2425-2433.	3.9	172
3	Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nature Communications, 2015, 6, 7119.	12.8	170
4	Nosocomial Spread of Human Immunodeficiency Virusâ€Related Multidrugâ€Resistant Tuberculosis in Buenos Aires. Journal of Infectious Diseases, 1997, 176, 637-642.	4.0	151
5	IS <i>1245</i> Restriction Fragment Length Polymorphism Typing of <i>Mycobacterium avium</i> Isolates: Proposal for Standardization. Journal of Clinical Microbiology, 1998, 36, 3051-3054.	3.9	135
6	Global expansion of <i>Mycobacterium tuberculosis</i> lineage 4 shaped by colonial migration and local adaptation. Science Advances, 2018, 4, eaat5869.	10.3	130
7	Successful alternative treatment of extensively drug-resistant tuberculosis in Argentina with a combination of linezolid, moxifloxacin and thioridazine. Journal of Antimicrobial Chemotherapy, 2012, 67, 473-477.	3.0	114
8	Reciprocal cellular and humoral immune responses in bovine tuberculosis. Research in Veterinary Science, 1991, 50, 365-367.	1.9	110
9	Resolving lineage assignation on Mycobacterium tuberculosis clinical isolates classified by spoligotyping with a new high-throughput 3R SNPs based method. Infection, Genetics and Evolution, 2010, 10, 1066-1074.	2.3	95
10	Outbreaks of Mycobacterium Tuberculosis MDR Strains Induce High IL-17 T-Cell Response in Patients With MDR Tuberculosis That Is Closely Associated With High Antigen Load. Journal of Infectious Diseases, 2011, 204, 1054-1064.	4.0	95
11	Correlations of mutations in katG, oxyR-ahpC and inhA genes and in vitro susceptibility in Mycobacterium tuberculosisclinical strains segregated by spoligotype families from tuberculosis prevalent countries in South America. BMC Microbiology, 2009, 9, 39.	3.3	84
12	An update on bovine tuberculosis programmes in Latin American and Caribbean countries. Veterinary Microbiology, 2006, 112, 111-118.	1.9	79
13	Patients with Multidrug-Resistant Tuberculosis Display Impaired Th1 Responses and Enhanced Regulatory T-Cell Levels in Response to an Outbreak of Multidrug-Resistant <i>Mycobacterium tuberculosis</i> M and Ra Strains. Infection and Immunity, 2009, 77, 5025-5034.	2.2	67
14	Ultrastructural and Immunohistochemical Studies in Five Cases of Argentine Hemorrhagic Fever. Journal of Infectious Diseases, 1975, 132, 35-43.	4.0	62
15	Bovine tuberculosis in Latin America and the Caribbean: current status, control and eridication programs. Veterinary Microbiology, 1994, 40, 5-14.	1.9	62
16	Mycobacterium tuberculosis strains of the Beijing genotype are rarely observed in tuberculosis patients in South America. Memorias Do Instituto Oswaldo Cruz, 2008, 103, 489-492.	1.6	51
17	Impact of HIV co-infection on the evolution and transmission of multidrug-resistant tuberculosis. ELife, 2016, 5, .	6.0	51
18	Use of spatial statistics and monitoring data to identify clustering of bovine tuberculosis in Argentina. Preventive Veterinary Medicine, 2002, 56, 63-74.	1.9	50

VIVIANA RITACCO

#	Article	lF	CITATIONS
19	Reactive oxygen species production by human dendritic cells involves TLR2 and dectin-1 and is essential for efficient immune response against Mycobacteria. Cellular Microbiology, 2016, 18, 875-886.	2.1	48
20	Simulation model of within-herd transmission of bovine tuberculosis in Argentine dairy herds. Preventive Veterinary Medicine, 2002, 54, 361-372.	1.9	46
21	First insight into Mycobacterium tuberculosis genetic diversity in Paraguay. BMC Microbiology, 2007, 7, 75.	3.3	41
22	Further Evaluation of an Indirect Enzyme-Linked Immunosorbent Assay for the Diagnosis of Bovine Tuberculosis. Zoonoses and Public Health, 1990, 37, 19-27.	1.4	36
23	Multicenter evaluation of the nitrate reductase assay for drug resistance detection of Mycobacterium tuberculosis. Journal of Microbiological Methods, 2005, 63, 145-150.	1.6	32
24	In-House Phage Amplification Assay Is a Sound Alternative for Detecting Rifampin-Resistant Mycobacterium tuberculosis in Low-Resource Settings. Antimicrobial Agents and Chemotherapy, 2005, 49, 425-427.	3.2	30
25	HIV Infection and Geographically Bound Transmission of Drug-Resistant Tuberculosis, Argentina. Emerging Infectious Diseases, 2012, 18, 1802-1810.	4.3	30
26	Conspicuous multidrug-resistant Mycobacterium tuberculosis cluster strains do not trespass country borders in Latin America and Spain. Infection, Genetics and Evolution, 2012, 12, 711-717.	2.3	30
27	Multidrug-Resistant Tuberculosis in HIV-Negative Patients, Buenos Aires, Argentina. Emerging Infectious Diseases, 2003, 9, 965-969.	4.3	29
28	IS-seq: a novel high throughput survey of in vivo IS6110 transposition in multiple Mycobacterium tuberculosis genomes. BMC Genomics, 2012, 13, 249.	2.8	29
29	Assessment of the Sensitivity and Specificity of Enzyme-Linked Immunosorbent Assay (ELISA) for the Detection of Mycobacterial Antibodies in Bovine Tuberculosis. Zoonoses and Public Health, 1987, 34, 119-125.	1.4	28
30	Multicenter evaluation of mycobacteria identification by PCR restriction enzyme analysis in laboratories from Latin America and the Caribbean. Journal of Microbiological Methods, 2005, 61, 193-199.	1.6	28
31	The use of microbead-based spoligotyping for Mycobacterium tuberculosis complex to evaluate the quality of the conventional method: Providing guidelines for Quality Assurance when working on membranes. BMC Infectious Diseases, 2011, 11, 110.	2.9	27
32	Mutations in DNA repair genes are associated with the Haarlem lineage of Mycobacterium tuberculosis independently of their antibiotic resistance. Tuberculosis, 2007, 87, 502-508.	1.9	24
33	Bedaquiline and linezolid MIC distributions and epidemiological cut-off values for <i>Mycobacterium tuberculosis</i> in the Latin American region. Journal of Antimicrobial Chemotherapy, 2019, 74, 373-379.	3.0	24
34	Outbreaks of Mycobacterium tuberculosis MDR strains differentially induce neutrophil respiratory burst involving lipid rafts, p38 MAPK and Syk. BMC Infectious Diseases, 2014, 14, 262.	2.9	22
35	Mesotherapy-associated Outbreak Caused byMycobacterium immunogenum. Emerging Infectious Diseases, 2009, 15, 357-359.	4.3	21
36	Clinical Isolates ofMycobacterium tuberculosisDiffer in Their Ability to Induce Respiratory Burst and Apoptosis in Neutrophils as a Possible Mechanism of Immune Escape. Clinical and Developmental Immunology, 2012, 2012, 1-11.	3.3	21

VIVIANA RITACCO

#	Article	IF	CITATIONS
37	Multidrug-resistant tuberculosis in bone marrow transplant recipient. Transplant Infectious Disease, 2005, 7, 45-46.	1.7	15
38	Electrophoresis karyotype and chromosome-length polymorphism ofHistoplasma capsulatumclinical isolates from Latin America. FEMS Immunology and Medical Microbiology, 2005, 45, 423-428.	2.7	15
39	Genomic Signatures of the Haarlem Lineage of <i>Mycobacterium tuberculosis</i> : Implications of Strain Genetic Variation in Drug and Vaccine Development. Journal of Clinical Microbiology, 2010, 48, 3614-3623.	3.9	14
40	Immunofluorescent Anti-Junin Virus Antibodies in Argentine Hemorrhagic Fever. Intervirology, 1979, 12, 26-31.	2.8	13
41	Genotypes of Mycobacterium tuberculosis in patients at risk of drug resistance in Bolivia. Infection, Genetics and Evolution, 2013, 17, 195-201.	2.3	13
42	Mycobacterium tuberculosis Multidrug Resistant Strain M Induces an Altered Activation of Cytotoxic CD8+ T Cells. PLoS ONE, 2014, 9, e97837.	2.5	12
43	Differential Expression of Immunogenic Proteins on Virulent <i>Mycobacterium tuberculosis</i> Clinical Isolates. BioMed Research International, 2014, 2014, 1-13.	1.9	12
44	<i>Mycobacterium tuberculosis</i> Multidrug-Resistant Strain M Induces Low IL-8 and Inhibits TNF- <i>α</i> Secretion by Bronchial Epithelial Cells Altering Neutrophil Effector Functions. Mediators of Inflammation, 2017, 2017, 1-13.	3.0	11
45	Indigenous Dengue Fever, Buenos Aires, Argentina. Emerging Infectious Diseases, 2008, 14, 1498-1499.	4.3	10
46	Rifampin-Isoniazid Oligonucleotide Typing: an Alternative Format for Rapid Detection of Multidrug-Resistant <i>Mycobacterium tuberculosis</i> . Journal of Clinical Microbiology, 2010, 48, 4386-4391.	3.9	10
47	Single nucleotide polymorphisms may explain the contrasting phenotypes of two variants of a multidrug-resistant Mycobacterium tuberculosis strain. Tuberculosis, 2017, 103, 28-36.	1.9	10
48	Two genetically-related multidrug-resistant Mycobacterium tuberculosis strains induce divergent outcomes of infection in two human macrophage models. Infection, Genetics and Evolution, 2013, 16, 151-156.	2.3	9
49	Exploring the "Latin American Mediterranean―family and the RDRio lineage in Mycobacterium tuberculosis isolates from Paraguay, Argentina and Venezuela. BMC Microbiology, 2019, 19, 131.	3.3	9
50	Trends of Two Epidemic Multidrug-Resistant Strains of Mycobacterium tuberculosis in Argentina Disclosed by Tailored Molecular Strategy. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1308-1311.	1.4	9
51	Genotypic diversity of Mycobacterium tuberculosis in Buenos Aires, Argentina. Infection, Genetics and Evolution, 2018, 62, 1-7.	2.3	8
52	Association between bacterial homoplastic variants and radiological pathology in tuberculosis. Thorax, 2020, 75, 584-591.	5.6	8
53	Simulation-model evaluation of bovine tuberculosis-eradication strategies in Argentine dairy herds. Preventive Veterinary Medicine, 2002, 54, 351-360.	1.9	7
54	C5aR contributes to the weak Th1 profile induced by an outbreak strain of Mycobacterium tuberculosis. Tuberculosis, 2017, 103, 16-23.	1.9	7

VIVIANA RITACCO

#	Article	IF	CITATIONS
55	Differences in the robustness of clusters involving the Mycobacterium tuberculosis strains most frequently isolated from immigrant cases in Madrid. Clinical Microbiology and Infection, 2010, 16, 1544-1554.	6.0	6
56	Differential induction of macrophage cell death by antigens of a clustered and a non-clustered multidrug-resistantMycobacterium tuberculosisstrain from Haarlem family. FEMS Immunology and Medical Microbiology, 2012, 66, 363-371.	2.7	6
57	Relation of Mycobacterium tuberculosis mutations at katG 315 and inhA -15 with drug resistance profile, genetic background, and clustering in Argentina. Diagnostic Microbiology and Infectious Disease, 2017, 89, 197-201.	1.8	6
58	Performance of a highly successful outbreak strain of Mycobacterium tuberculosis in a multifaceted approach to bacterial fitness assessment. International Journal of Medical Microbiology, 2018, 308, 349-357.	3.6	6
59	Recurrences of multidrugâ€resistant tuberculosis: Strains involved, withinâ€host diversity, and fineâ€tuned allocation of reinfections. Transboundary and Emerging Diseases, 2022, 69, 327-336.	3.0	6
60	Survival of an epidemic MDR strain of Mycobacterium tuberculosis and its non-prosperous variant within activated macrophages. Infection, Genetics and Evolution, 2019, 73, 248-254.	2.3	3
61	Five-year microevolution of a multidrug-resistant Mycobacterium tuberculosis strain within a patient with inadequate compliance to treatment. BMC Infectious Diseases, 2021, 21, 394.	2.9	3
62	A Phenotypic Characterization of Two Isolates of a Multidrug-Resistant Outbreak Strain of <i>Mycobacterium tuberculosis</i> with Opposite Epidemiological Fitness. BioMed Research International, 2020, 2020, 1-9.	1.9	2
63	The Situation of HIV/Mycobacterium tuberculosis Co-Infection in South America. The Open Infectious Diseases Journal, 2011, 5, 81-88.	0.6	2
64	The host-pathogen-environment triad: Lessons learned through the study of the multidrug-resistant Mycobacterium tuberculosis M strain. Tuberculosis, 2022, 134, 102200.	1.9	2
65	Simultaneous Detection of Mycobacterium bovis and Mycobacterium tuberculosis in Human Cerebrospinal Fluid. Journal of Clinical Microbiology, 2007, 45, 684-684.	3.9	1
66	Clinical Management of Drug-Resistant Tuberculosis in Resource Constrained Settings. Clinical Medicine Insights Therapeutics, 2013, 5, CMT.S6560.	0.4	0
67	Research Priorities for HIV/M. tuberculosis Co-Infection. The Open Infectious Diseases Journal, 2011, 5, 14-20.	0.6	0
68	The Situation of HIV/Mycobacterium tuberculosis Co-Infection in South America. The Open Infectious Diseases Journal, 2011, 5, 81-88.	0.6	0