
Xiao-feng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/776335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Heterocycles via Palladium-Catalyzed Carbonylations. Chemical Reviews, 2013, 113, 1-35.	47.7	1,105
2	Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chemical Society Reviews, 2011, 40, 4986.	38.1	849
3	From Noble Metal to Nobel Prize: Palladiumâ€Catalyzed Coupling Reactions as Key Methods in Organic Synthesis. Angewandte Chemie - International Edition, 2010, 49, 9047-9050.	13.8	515
4	Transition-Metal-Catalyzed Carbonylation Reactions of Olefins and Alkynes: A Personal Account. Accounts of Chemical Research, 2014, 47, 1041-1053.	15.6	453
5	First-Row Transition-Metal-Catalyzed Carbonylative Transformations of Carbon Electrophiles. Chemical Reviews, 2019, 119, 2090-2127.	47.7	421
6	The Chemistry of CO: Carbonylation. CheM, 2019, 5, 526-552.	11.7	364
7	Recent Developments on the Trifluoromethylation of (Hetero)Arenes. Chemistry - an Asian Journal, 2012, 7, 1744-1754.	3.3	337
8	Palladium atalyzed Oxidative Carbonylation Reactions. ChemSusChem, 2013, 6, 229-241.	6.8	301
9	A powerful combination: recent achievements on using TBAI and TBHP as oxidation system. Organic and Biomolecular Chemistry, 2014, 12, 5807-5817.	2.8	294
10	The Applications of Dimethyl Sulfoxide as Reagent in Organic Synthesis. Advanced Synthesis and Catalysis, 2016, 358, 336-352.	4.3	277
11	Development of a General Palladium-Catalyzed Carbonylative Heck Reaction of Aryl Halides. Journal of the American Chemical Society, 2010, 132, 14596-14602.	13.7	213
12	Non-noble metal-catalysed carbonylative transformations. Chemical Society Reviews, 2018, 47, 172-194.	38.1	195
13	Recent advances in 4(3H)-quinazolinone syntheses. RSC Advances, 2014, 4, 12065-12077.	3.6	194
14	Ruthenium and Rhodium atalyzed Carbonylation Reactions. ChemCatChem, 2012, 4, 447-458.	3.7	175
15	Palladiumâ€Catalyzed Carbonylative CH Activation of Heteroarenes. Angewandte Chemie - International Edition, 2010, 49, 7316-7319.	13.8	165
16	Transition Metal Catalyzed Carbonylation Reactions. , 2013, , .		161
17	Selective Palladium atalyzed Aminocarbonylation of Aryl Halides with CO and Ammonia. Chemistry - A European Journal, 2010, 16, 9750-9753.	3.3	159
18	Palladium atalyzed Coupling Reactions: Carbonylative Heck Reactions To Give Chalcones. Angewandte Chemie - International Edition, 2010, 49, 5284-5288.	13.8	154

#	Article	IF	CITATIONS
19	Palladium-Catalyzed Carbonylative Transformation of C(sp ³)–X Bonds. ACS Catalysis, 2014, 4, 2977-2989.	11.2	154
20	Zinc atalyzed Organic Synthesis: CC, CN, CO Bond Formation Reactions. Advanced Synthesis and Catalysis, 2012, 354, 3141-3160.	4.3	153
21	Palladium-catalyzed carbonylative transformation of aryl chlorides and aryl tosylates. RSC Advances, 2016, 6, 83831-83837.	3.6	134
22	Palladiumâ€Catalyzed Carbonylative Multicomponent Reactions. Chemistry - A European Journal, 2017, 23, 2973-2987.	3.3	131
23	Ironâ€Catalyzed Oneâ€Pot Oxidative Esterification of Aldehydes. European Journal of Organic Chemistry, 2009, 2009, 1144-1147.	2.4	125
24	Development of the First Iron Chlorideâ€Catalyzed Hydration of Terminal Alkynes. Advanced Synthesis and Catalysis, 2009, 351, 367-370.	4.3	124
25	Acylation of (Hetero)Arenes through Cï£;H Activation with Aroyl Surrogates. Chemistry - A European Journal, 2015, 21, 12252-12265.	3.3	122
26	Palladiumâ€Catalyzed Carbonylative Synthesis of Quinazolinones from 2â€Aminobenzamide and Aryl Bromides. Chemistry - A European Journal, 2013, 19, 12635-12638.	3.3	119
27	A General and Convenient Palladium atalyzed Carbonylative Sonogashira Coupling of Aryl Bromides. Chemistry - A European Journal, 2010, 16, 12104-12107.	3.3	113
28	Oxidative synthesis of quinazolinones and benzothiadiazine 1,1-dioxides from 2-aminobenzamide and 2-aminobenzenesulfonamide with benzyl alcohols and aldehydes. RSC Advances, 2014, 4, 8-17.	3.6	113
29	Recyclable Catalysts for Palladium atalyzed CO Coupling Reactions, Buchwald–Hartwig Aminations, and Sonogashira Reactions. Angewandte Chemie - International Edition, 2010, 49, 8988-8992.	13.8	105
30	Baseâ€Controlled Selectivity in the Synthesis of Linear and Angular Fused Quinazolinones by a Palladiumâ€Catalyzed Carbonylation/Nucleophilic Aromatic Substitution Sequence. Angewandte Chemie - International Edition, 2014, 53, 7579-7583.	13.8	103
31	A General Palladiumâ€Catalyzed Carbonylative Sonogashira Coupling of Aryl Triflates. Chemistry - A European Journal, 2011, 17, 106-110.	3.3	100
32	Ligand―and Solvent ontrolled Regio―and Chemodivergent Carbonylative Reactions. Angewandte Chemie - International Edition, 2018, 57, 1152-1160.	13.8	99
33	Convenient and mild synthesis of nitroarenes by metal-free nitration of arylboronic acids. Chemical Communications, 2011, 47, 12462.	4.1	98
34	Cascade synthesis of quinazolinones from 2-aminobenzonitriles and aryl bromides via palladium-catalyzed carbonylation reaction. Green Chemistry, 2014, 16, 1336-1343.	9.0	95
35	Carbonylative synthesis of heterocycles involving diverse CO surrogates. Chemical Communications, 2020, 56, 6016-6030.	4.1	93
36	Development of a Second Generation Palladium Catalyst System for the Aminocarbonylation of Aryl Halides with CO and Ammonia. Chemistry - an Asian Journal, 2010, 5, 2168-2172.	3.3	91

#	Article	IF	CITATIONS
37	Catalytic conversion of aryl triazenes into aryl sulfonamides using sulfur dioxide as the sulfonyl source. Chemical Communications, 2014, 50, 9513-9516.	4.1	91
38	No Making Without Breaking: Nitrogen-Centered Carbonylation Reactions. ACS Catalysis, 2020, 10, 6510-6531.	11.2	91
39	Cobalt-Catalyzed Direct Carbonylative Synthesis of Free (<i>NH</i>)-Benzo[<i>cd</i>]indol-2(1 <i>H</i>)-ones from Naphthylamides. Organic Letters, 2019, 21, 5694-5698.	4.6	90
40	Nonâ€Redoxâ€Metal atalyzed Redox Reactions: Zinc Catalysts. Chemistry - an Asian Journal, 2012, 7, 2502-2509.	3.3	88
41	Aryl Formate as Bifunctional Reagent: Applications in Palladium atalyzed Carbonylative Coupling Reactions Using In Situ Generated CO. Angewandte Chemie - International Edition, 2014, 53, 3183-3186.	13.8	88
42	Lewis acid-catalyzed oxidation of benzylamines to benzamides. Chemical Communications, 2012, 48, 12237.	4.1	85
43	C-F bond activation under transition-metal-free conditions. Science China Chemistry, 2021, 64, 1630-1659.	8.2	85
44	A Convenient Palladium atalyzed Carbonylative Suzuki Coupling of Aryl Halides with Formic Acid as the Carbon Monoxide Source. Chemistry - A European Journal, 2015, 21, 17650-17656.	3.3	84
45	Copper atalyzed Carbonylative Coupling of Cycloalkanes and Amides. Angewandte Chemie - International Edition, 2016, 55, 7227-7230.	13.8	84
46	Palladium-Catalyzed Carbonylative Synthesis of Benzoxazinones from <i>N</i> -(<i>o</i> -Bromoaryl)amides Using Paraformaldehyde as the Carbonyl Source. Journal of Organic Chemistry, 2014, 79, 10410-10416.	3.2	83
47	Palladiumâ€Catalyzed Aminosulfonylation of Aryl Iodides by using Na ₂ SO ₃ as the SO ₂ Source. European Journal of Organic Chemistry, 2014, 2014, 3101-3103.	2.4	81
48	Convenient and General Palladiumâ€Catalyzed Carbonylative Sonogashira Coupling of Aryl Amines. Angewandte Chemie - International Edition, 2011, 50, 11142-11146.	13.8	80
49	Visible Lightâ€Induced Carbonylation Reactions with Organic Dyes as the Photosensitizers. ChemSusChem, 2016, 9, 2279-2283.	6.8	79
50	The First Zn ^{II} atalyzed Oxidative Amidation of Benzyl Alcohols with Amines under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2013, 2013, 2783-2787.	2.4	78
51	Ligandâ€Free Iron/Copperâ€Cocatalyzed Amination of Aryl Iodides. European Journal of Organic Chemistry, 2009, 2009, 4753-4756.	2.4	76
52	Highly Efficient Fourâ€Component Synthesis of 4(3 <i>H</i>)â€Quinazolinones: Palladiumâ€Catalyzed Carbonylative Coupling Reactions. Angewandte Chemie - International Edition, 2014, 53, 1420-1424.	13.8	76
53	Palladiumâ€Catalyzed Carbonylative Cyclization of Arenes by CH Bond Activation with DMF as the Carbonyl Source. Chemistry - A European Journal, 2015, 21, 16370-16373.	3.3	76
54	Benzene-1,3,5-triyl triformate (TFBen): a convenient, efficient, and non-reacting CO source in carbonylation reactions. Tetrahedron Letters, 2016, 57, 3368-3370.	1.4	75

#	Article	IF	CITATIONS
55	A convenient palladium-catalyzed carbonylative synthesis of 4(3H)-quinazolinones from 2-bromoformanilides and organo nitros with Mo(CO) ₆ as a multiple promoter. Green Chemistry, 2014, 16, 3763-3767.	9.0	74
56	Palladium atalyzed Oneâ€Pot Carbonylative Sonogashira Reaction Employing Formic acid as the CO Source. Chemistry - an Asian Journal, 2015, 10, 1870-1873.	3.3	74
57	Recent Achievements in Carbonylation Reactions: A Personal Account. Synlett, 2017, 28, 175-194.	1.8	74
58	Convenient Carbonylation of Aryl Bromides with Phenols to Form Aryl Esters by Applying a Palladium/Diâ€1â€adamantylâ€ <i>n</i> â€butylphosphine Catalyst. ChemCatChem, 2010, 2, 509-513.	3.7	72
59	A Convenient Palladiumâ€Catalyzed Reductive Carbonylation of Aryl Iodides with Dual Role of Formic Acid. Chemistry - A European Journal, 2016, 22, 5835-5838.	3.3	69
60	Palladium-catalyzed Sonogashira reactions of aryl amines with alkynes via in situ formation of arenediazonium salts. Chemical Communications, 2011, 47, 7959.	4.1	68
61	Palladiumâ€Catalyzed Carbonylative Fourâ€Component Synthesis of Thiochromenones: The Advantages of a Reagent Capsule. Angewandte Chemie - International Edition, 2016, 55, 5067-5070.	13.8	67
62	Copper atalyzed Carbonylative Coupling of Cycloalkanes and Amides. Angewandte Chemie, 2016, 128, 7343-7346.	2.0	67
63	Copper-Catalyzed Carbonylative Synthesis of Aliphatic Amides from Alkanes and Primary Amines via C _(sp3) –H Bond Activation. ACS Catalysis, 2016, 6, 5561-5564.	11.2	67
64	Lewis Base Effects in the Baylisâ^'Hillman Reaction of Arenecarbaldehydes and N-Arylidene-4-methylbenzenesulfonamides with α,β-Unsaturated Cyclic Ketones. European Journal of Organic Chemistry, 2002, 2002, 3666-3679.	2.4	66
65	Progress in Carbonylativeâ€Heck Reactions of Aryl Bromides: Catalysis and DFT Studies. ChemCatChem, 2011, 3, 726-733.	3.7	65
66	Palladiumâ€Catalyzed Carbonylative [3+2+1] Annulation of <i>N</i> â€Arylâ€Pyridineâ€2â€Amines with Internal Alkynes by Cï£;H Activation: Facile Synthesis of 2â€Quinolinones. Chemistry - A European Journal, 2014, 20, 14189-14193.	3.3	64
67	Synthesis of Carboxylic Acids and Esters from CO2. Topics in Current Chemistry, 2017, 375, 4.	5.8	64
68	Palladium atalyzed Carbonylative Suzuki Coupling of Benzyl Halides with Potassium Aryltrifluoroborates in Aqueous Media. Advanced Synthesis and Catalysis, 2011, 353, 788-792.	4.3	63
69	Palladium-catalyzed carbonylative coupling of benzyl chlorides with aryl boronic acids in aqueous media. Tetrahedron Letters, 2010, 51, 6146-6149.	1.4	62
70	Direct Câ^'H Bond Borylation of (Hetero)Arenes: Evolution from Noble Metal to Metal Free. Angewandte Chemie - International Edition, 2020, 59, 1770-1774.	13.8	61
71	Gallic Acid-Promoted SET Process for Cyclobutanone Oximes Activation and (Carbonylative-)Alkylation of Olefins. ACS Catalysis, 2018, 8, 10926-10930.	11.2	60
72	A general and selective zinc-catalyzed oxidation of sulfides to sulfoxides. Tetrahedron Letters, 2012, 53, 4328-4331.	1.4	59

#	Article	IF	CITATIONS
73	Palladium-catalyzed alkoxycarbonylation of aryl halides with phenols employing formic acid as the CO source. Catalysis Science and Technology, 2016, 6, 3099-3107.	4.1	59
74	A Convenient and General Palladium atalyzed Carbonylative Coupling for the Synthesis of 2â€Arylbenzoxazinones. Chemistry - A European Journal, 2011, 17, 12246-12249.	3.3	58
75	Copperâ€Catalyzed Regioselective Borocarbonylative Coupling of Unactivated Alkenes with Alkyl Halides: Synthesis of βâ€Boryl Ketones. Angewandte Chemie - International Edition, 2020, 59, 10451-10455.	13.8	57
76	Zinc-catalyzed oxidative esterification of aromatic aldehydes. Tetrahedron Letters, 2012, 53, 3397-3399.	1.4	56
77	Pd/C as an efficient heterogeneous catalyst for carbonylative four-component synthesis of 4(3H)-quinazolinones. Catalysis Science and Technology, 2015, 5, 4474-4480.	4.1	55
78	Palladium atalyzed Carbonylative Heck Reaction of Aryl Bromides with Vinyl Ethers to 3â€Alkoxy Alkenones and Pyrazoles. Chemistry - A European Journal, 2012, 18, 4827-4831.	3.3	54
79	A General and Efficient Zinc atalyzed Oxidation of Benzyl Alcohols to Aldehydes and Esters. Chemistry - A European Journal, 2012, 18, 8912-8915.	3.3	54
80	Transition metalâ€catalyzed oxidative transformations of methylarenes. Applied Organometallic Chemistry, 2015, 29, 63-86.	3.5	54
81	Palladium-catalyzed intermolecular transthioetherification of aryl halides with thioethers and thioesters. Chemical Science, 2020, 11, 2187-2192.	7.4	54
82	Palladium atalyzed Carbonylation Reaction of Aryl Bromides with 2â€Hydroxyacetophenones to Form Flavones. Chemistry - A European Journal, 2012, 18, 12595-12598.	3.3	53
83	Towards a Practical and Efficient Copper-Catalyzed Trifluoromethylation of Aryl Halides. Topics in Catalysis, 2012, 55, 426-431.	2.8	53
84	Palladiumâ€Catalyzed Ligandâ€Controlled Selective Synthesis of Aldehydes and Acids from Aryl Halides and Formic Acid. ChemCatChem, 2017, 9, 3121-3124.	3.7	52
85	Palladium-Catalyzed Carbonylative Synthesis of α,β-Unsaturated Amides from Styrenes and Nitroarenes. Organic Letters, 2018, 20, 4988-4993.	4.6	52
86	The Applications of (Para)formaldehyde in Metal atalyzed Organic Synthesis. Advanced Synthesis and Catalysis, 2015, 357, 3393-3418.	4.3	51
87	Palladium-Catalyzed Carbonylative Dearomatization of Indoles. Organic Letters, 2019, 21, 5264-5268.	4.6	51
88	Base mediated synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones from 2-aminobenzonitriles and aromatic aldehydes in water. Organic and Biomolecular Chemistry, 2014, 12, 1865.	2.8	50
89	Copperâ€Catalyzed Carbonylative Hydroamidation of Styrenes to Branched Amides. Angewandte Chemie - International Edition, 2020, 59, 22441-22445.	13.8	50
90	Four omponent Borocarbonylation of Vinylarenes Enabled by Cooperative Cu/Pd Catalysis: Access to βâ€Boryl Ketones and βâ€Boryl Vinyl Esters. Angewandte Chemie - International Edition, 2020, 59, 17055-1706	1. ^{13.8}	50

#	Article	IF	CITATIONS
91	Palladium-Catalyzed Regioselective Carbonylative Coupling/Amination of Aryl Iodides with Unactivated Alkenes: Efficient Synthesis of β-Aminoketones. ACS Catalysis, 2019, 9, 2977-2983.	11.2	49
92	A Convenient Palladiumâ€Catalyzed Carbonylative Synthesis of 2â€Aminbenzoxazinones from 2â€Bromoanilines and Isocyanates. Chemistry - A European Journal, 2013, 19, 6230-6233.	3.3	48
93	Iridiumâ€Catalyzed Carbonylative Synthesis of Chromenones from Simple Phenols and Internal Alkynes at Atmospheric Pressure. Angewandte Chemie - International Edition, 2016, 55, 14151-14154.	13.8	48
94	Palladium-Catalyzed Carbonylative Synthesis of Isoindolinones from Benzylamines with TFBen as the CO Source. Journal of Organic Chemistry, 2019, 84, 1421-1429.	3.2	48
95	Copper-Catalyzed Synthesis of Stereodefined Cyclopropyl Bis(boronates) from Alkenes with CO as the C1 Source. Journal of the American Chemical Society, 2020, 142, 14074-14079.	13.7	48
96	Palladium-catalyzed enantioselective carbonylation reactions. Science China Chemistry, 2022, 65, 441-461.	8.2	48
97	A General Palladiumâ€Catalyzed Aminocarbonylation of Phenols to Primary Benzamides via In Situ Generation of Aryl Nonaflates. Chemistry - A European Journal, 2012, 18, 419-422.	3.3	47
98	Selective palladium-catalyzed carbonylative synthesis of aurones with formic acid as the CO source. RSC Advances, 2016, 6, 62810-62813.	3.6	47
99	Palladium-Catalyzed Carbonylative Transformation of Organic Halides with Formic Acid as the Coupling Partner and CO Source: Synthesis of Carboxylic Acids. Journal of Organic Chemistry, 2017, 82, 9710-9714.	3.2	47
100	Baseâ€Promoted Sulfurâ€Mediated Carbonylative Cyclization of Propargylic Amines. European Journal of Organic Chemistry, 2018, 2018, 688-692.	2.4	47
101	Benzene-1,3,5-triyl Triformate (TFBen)-Promoted Palladium-Catalyzed Carbonylative Synthesis of 2-Oxo-2,5-dihydropyrroles from Propargyl Amines. Organic Letters, 2020, 22, 194-198.	4.6	47
102	FeCl ₃ -Mediated Synthesis of 2-(Trifluoromethyl)quinazolin-4(3 <i>H</i>)-ones from Isatins and Trifluoroacetimidoyl Chlorides. Organic Letters, 2020, 22, 5567-5571.	4.6	47
103	Palladium atalyzed Oxidative Carbonylative Coupling Reactions of Arylboronic Acids with Styrenes to Chalcones under Mild Aerobic Conditions. Chemistry - an Asian Journal, 2012, 7, 282-285.	3.3	46
104	Palladium-Catalyzed Four-Component Carbonylative Cyclization Reaction of Trifluoroacetimidoyl Chlorides, Propargyl Amines, and Diaryliodonium Salts: Access to Trifluoromethyl-Containing Trisubstituted Imidazoles. Organic Letters, 2020, 22, 1980-1984.	4.6	46
105	Iron-catalyzed sulfonylimine synthesis under neutral conditions. Tetrahedron, 2009, 65, 7380-7384.	1.9	45
106	Palladium atalyzed Aminocarbonylation of Benzyl Chlorides using Ammonia. ChemCatChem, 2012, 4, 69-71.	3.7	45
107	Palladium@Cerium(IV) Oxideâ€Catalyzed Oxidative Synthesis of <i>N</i> â€{2â€Pyridyl)indoles <i>via</i> CH Activation Reaction. Advanced Synthesis and Catalysis, 2014, 356, 2955-2959.	4.3	44
108	Trifluoroacetimidoyl halides: a potent synthetic origin. Organic Chemistry Frontiers, 2020, 7, 223-254.	4.5	44

#	Article	IF	CITATIONS
109	Palladium-catalyzed carbonylative coupling of benzyl chlorides with terminal alkynes to give 1,4-diaryl-3-butyn-2-ones and related furanones. Organic and Biomolecular Chemistry, 2011, 9, 8003.	2.8	43
110	A General Cyclocarbonylation of Aryl Bromides and Triflates with Acetylenes: Palladiumâ€Catalyzed Synthesis of 3â€Alkylidenefuranâ€2â€ones. Chemistry - A European Journal, 2011, 17, 8014-8017.	3.3	43
111	A General Palladium atalyzed Carbonylative Synthesis of 2â€Alkylbenzoxazinones from 2â€Bromoanilines and Acid Anhydrides. Chemistry - A European Journal, 2012, 18, 12599-12602.	3.3	43
112	Palladium atalyzed Synthesis of Phthalazinones: Efficient Carbonylative Coupling of 2â€Bromobenzaldehydes and Hydrazines. Chemistry - A European Journal, 2012, 18, 8596-8599.	3.3	43
113	Palladium atalyzed Carbonylative Synthesis of Phthalimides from 1,2â€Đibromoarenes with Molybdenum Hexacarbonyl as Carbon Monoxide Source. Advanced Synthesis and Catalysis, 2013, 355, 3581-3585.	4.3	43
114	Palladium-catalyzed carbonylative synthesis of N-(2-cyanoaryl)benzamides and sequential synthesis of quinazolinones. Tetrahedron, 2014, 70, 23-29.	1.9	43
115	Pd/C-catalyzed carbonylative C–H activation with DMF as the CO source. Tetrahedron Letters, 2015, 56, 6413-6416.	1.4	43
116	Metalâ€Free Synthesis of 5â€Trifluoromethylâ€1,2,4â€Triazoles from Iodineâ€Mediated Annulation of Trifluoroacetimidoyl Chlorides and Hydrazones. Advanced Synthesis and Catalysis, 2019, 361, 4949-4954.	4.3	42
117	Cobalt-Catalyzed Direct C–H Carbonylative Synthesis of Free (<i>NH</i>)-Indolo[1,2- <i>a</i>]quinoxalin-6(5 <i>H</i>)-ones. Organic Letters, 2021, 23, 178-182.	4.6	42
118	Pd/Cu atalyzed Defluorinative Carbonylative Coupling of Aryl Iodides and <i>gem</i> â€Difluoroalkenes: Efficient Synthesis of αâ€Fluorochalcones. Angewandte Chemie - International Edition, 2021, 60, 8818-8822.	13.8	42
119	A Convenient and Efficient Palladium atalyzed Carbonylative Sonogashira Transformation with Formic Acid as the CO Source. European Journal of Organic Chemistry, 2017, 2017, 1434-1437.	2.4	41
120	Palladium-catalyzed carbonylative Sonogashira coupling between aryl triazenes and alkynes. Organic and Biomolecular Chemistry, 2015, 13, 5090-5093.	2.8	40
121	A General Palladium atalyzed Carbonylative Synthesis of Chromenones from Salicylic Aldehydes and Benzyl Chlorides. Chemistry - A European Journal, 2013, 19, 12245-12248.	3.3	39
122	Copper atalyzed Regioselective Borocarbonylative Coupling of Unactivated Alkenes with Alkyl Halides: Synthesis of βâ€Boryl Ketones. Angewandte Chemie, 2020, 132, 10537-10541.	2.0	39
123	Palladium atalyzed Perfluoroalkylative Carbonylation of Unactivated Alkenes: Access to βâ€Perfluoroalkyl Esters. Angewandte Chemie - International Edition, 2021, 60, 24292-24298.	13.8	39
124	Palladium atalyzed Reductive Carbonylation of Aryl Bromides with Phosphinite Ligands. Chemistry - an Asian Journal, 2012, 7, 2213-2216.	3.3	38
125	A general and practical oxidation of alcohols to primary amides under metal-free conditions. Green Chemistry, 2013, 15, 1956.	9.0	38
126	Oxidative synthesis of benzamides from toluenes and DMF. Tetrahedron Letters, 2014, 55, 5082-5084.	1.4	38

#	Article	IF	CITATIONS
127	Palladium-catalyzed dicarbonylative synthesis of tetracycle quinazolinones. Organic and Biomolecular Chemistry, 2015, 13, 4422-4425.	2.8	38
128	A Convenient Palladium atalyzed Carbonylative Synthesis of Benzofuranâ€2(3 <i>H</i>)â€ones with Form Acid as the CO Source. Chemistry - an Asian Journal, 2016, 11, 2453-2457.	iç 3.3	38
129	Iridiumâ€Catalyzed and Ligandâ€Controlled Carbonylative Synthesis of Flavones from Simple Phenols and Internal Alkynes. Chemistry - A European Journal, 2017, 23, 3276-3279.	3.3	38
130	Silver and Palladium Cocatalyzed Carbonylative Activation of Benzotriazoles to Benzoxazinones under Neutral Conditions. Organic Letters, 2017, 19, 6232-6235.	4.6	38
131	Copperâ€Catalyzed Alkynylation of C(<i>sp</i> ³)â^'H Bonds in <i>N</i> â€Fluoroâ€sulfonamides. Advanced Synthesis and Catalysis, 2019, 361, 5478-5482.	4.3	38
132	Zinc(II)-catalyzed oxidative amidation of arylaldehydes with alkylamines under solvent-free conditions. Tetrahedron Letters, 2013, 54, 1059-1062.	1.4	37
133	N2Extrusion and CO Insertion: A Novel Palladium-Catalyzed Carbonylative Transformation of Aryltriazenes. Organic Letters, 2015, 17, 1910-1913.	4.6	37
134	A Novel Domino Synthesis of Quinazolinediones by Palladiumâ€Catalyzed Double Carbonylation. Chemistry - A European Journal, 2014, 20, 8541-8544.	3.3	36
135	A Palladiumâ€Catalyzed Domino Procedure for the Synthesis of Unsymmetrical Ureas. Advanced Synthesis and Catalysis, 2018, 360, 2820-2824.	4.3	36
136	Direct Access to 1,1-Dicarbonyl Sulfoxonium Ylides from Aryl Halides or Triflates: Palladium-Catalyzed Carbonylation. Organic Letters, 2019, 21, 5310-5314.	4.6	36
137	A novel oxidative procedure for the synthesis of benzamides from styrenes and amines under metal-free conditions. Chemical Communications, 2014, 50, 4747.	4.1	35
138	A Practical and General Baseâ€Catalyzed Carbonylation of Amines for the Synthesis of <i>N</i> â€Formamides. Chemistry - A European Journal, 2015, 21, 14943-14948.	3.3	35
139	Palladiumâ€Catalyzed Carbonylative Synthesis of Aryl Formates under Mild Conditions. ChemCatChem, 2016, 8, 1788-1791.	3.7	35
140	Nickel-Catalyzed Thiocarbonylation of Arylboronic Acids with Sulfonyl Chlorides for the Synthesis of Thioesters. Organic Letters, 2020, 22, 6671-6676.	4.6	35
141	Palladium-catalyzed three-component carbonylative synthesis of 2-(trifluoromethyl)quinazolin-4(3 <i>H</i>)-ones from trifluoroacetimidoyl chlorides and amines. Organic Chemistry Frontiers, 2020, 7, 2499-2504.	4.5	35
142	Calcium and magnesium chlorides-catalyzed oxidative esterification of aromatic aldehydes. Tetrahedron Letters, 2014, 55, 1657-1659.	1.4	34
143	Practical and General Manganeseâ€Catalyzed Carbonylative Coupling of Alkyl Iodides with Amides. ChemCatChem, 2017, 9, 915-919.	3.7	34
144	Copperâ€Catalyzed 1,2â€Trifluoromethylation Carbonylation of Unactivated Alkenes: Efficient Access to βâ€Trifluoromethylated Aliphatic Carboxylic Acid Derivatives. Angewandte Chemie - International Edition, 2021, 60, 25787-25792.	13.8	34

#	Article	IF	CITATIONS
145	Highly efficient synthesis of flavones via Pd/C-catalyzed cyclocarbonylation of 2-iodophenol with terminal acetylenes. Catalysis Science and Technology, 2016, 6, 2905-2909.	4.1	33
146	Vinylboron Self-Promoted Carbonylative Coupling with Cyclobutanone Oxime Esters. Organic Letters, 2019, 21, 1766-1769.	4.6	33
147	Convenient palladium-catalyzed aminocarbonylation of anilines to N-arylbenzamides. Tetrahedron Letters, 2011, 52, 3702-3704.	1.4	32
148	Efficient palladium-catalyzed double carbonylation of o-dibromobenzenes: synthesis of thalidomide. Organic and Biomolecular Chemistry, 2014, 12, 5578-5581.	2.8	32
149	Ligand―and Solventâ€Tuned Chemoselective Carbonylation of Bromoaryl Triflates. Chemistry - A European Journal, 2017, 23, 13369-13378.	3.3	32
150	Palladium-Catalyzed Amide Synthesis via Aminocarbonylation of Arylboronic Acids with Nitroarenes. Organic Letters, 2019, 21, 4878-4881.	4.6	32
151	Palladium-Catalyzed Thiocarbonylation of Alkenes toward Linear Thioesters. ACS Catalysis, 2021, 11, 3614-3619.	11.2	32
152	Ligandâ€Controlled Copperâ€Catalyzed Regiodivergent Carbonylative Synthesis of αâ€Amino Ketones and αâ€Boryl Amides from Imines and Alkyl Iodides. Angewandte Chemie - International Edition, 2021, 60, 695-700.	13.8	32
153	Cobalt(II)-Catalyzed Alkoxycarbonylation of Aliphatic Amines via C–N Bond Activation. Organic Letters, 2019, 21, 6919-6923.	4.6	31
154	Cobalt-Catalyzed Carbonylative Synthesis of Phthalimides from <i>N</i> -(Pyridin-2-ylmethyl)benzamides with TFBen as the CO Source. Journal of Organic Chemistry, 2019, 84, 12648-12655.	3.2	31
155	Palladiumâ€Catalyzed Carbonylation of 2â€Bromoanilines with 2â€Formylbenzoic Acid and 2â€Halobenzaldehydes: Efficient Synthesis of Functionalized Isoindolinones. Chemistry - A European Journal, 2014, 20, 14184-14188.	3.3	30
156	Iron-catalyzed reduction of aromatic aldehydes with paraformaldehyde and H2O as the hydrogen source. Tetrahedron Letters, 2015, 56, 1118-1121.	1.4	30
157	Iridium atalyzed Carbonylative Synthesis of Halogenâ€Containing Quinolinâ€2(1 <i>H</i>)â€ones from Internal Alkynes and Simple Anilines. Advanced Synthesis and Catalysis, 2016, 358, 3350-3354.	4.3	30
158	Palladium-catalyzed carbonylative synthesis of benzofuran-2(3H)-ones from 2-hydroxybenzyl alcohols using formic acid as the CO source. Organic and Biomolecular Chemistry, 2017, 15, 1343-1345.	2.8	30
159	Carbonylations with CO ₂ as the CO Source and Reactivity Modifier. Angewandte Chemie - International Edition, 2017, 56, 5399-5401.	13.8	30
160	Palladium-catalyzed four-component carbonylative synthesis of 2,3-disubstituted quinazolin-4(3H)-ones: Convenient methaqualone preparation. Journal of Catalysis, 2018, 365, 10-13.	6.2	30
161	Rhodium-Catalyzed Carbonylative Coupling of Alkyl Halides with Phenols under Low CO Pressure. ACS Catalysis, 2020, 10, 5147-5152.	11.2	30
162	Palladium-Catalyzed Cascade Carbonylative Synthesis of 1,2,4-Triazol-3-ones from Hydrazonoyl Chlorides and NaN ₃ . Organic Letters, 2021, 23, 974-978.	4.6	30

#	Article	IF	CITATIONS
163	Palladium atalyzed Carbonylative Reactions of 1â€Bromoâ€2â€fluorobenzenes with Various Nucleophiles: Effective Combination of Carbonylation and Nucleophilic Substitution. Chemistry - A European Journal, 2014, 20, 16107-16110.	3.3	29
164	A highly-efficient palladium-catalyzed aminocarbonylation/S _N Ar approach to dibenzoxazepinones. Green Chemistry, 2015, 17, 2994-2999.	9.0	29
165	Baseâ€Promoted Carbonylative Cyclization of Propargylic Amines with Selenium under CO Gasâ€free Conditions. Advanced Synthesis and Catalysis, 2018, 360, 1693-1703.	4.3	29
166	Carbonylation of tertiary carbon radicals: synthesis of lactams. Chemical Communications, 2019, 55, 4655-4658.	4.1	29
167	Ligandâ€Controlled Regiodivergent Thiocarbonylation of Alkynes toward Linear and Branched α,l²â€Unsaturated Thioesters. Angewandte Chemie - International Edition, 2021, 60, 17178-17184.	13.8	29
168	A General and Efficient Palladium atalyzed Alkoxycarbonylation of Phenols To Form Esters through In Situ Formed Aryl Nonaflates. Chemistry - A European Journal, 2012, 18, 3831-3834.	3.3	28
169	Direct Palladium-Catalyzed Carbonylative Transformation of Allylic Alcohols and Related Derivatives. Organic Letters, 2017, 19, 5474-5477.	4.6	28
170	Palladium atalyzed Carbonylative Synthesis of 3â€Methyleneisoindolinâ€1â€ones from Ketimines with Hexacarbonylmolybdenum(0) as the Carbon Monoxide Source. ChemCatChem, 2017, 9, 94-98.	3.7	28
171	Palladium-Catalyzed Carbonylative Direct Transformation of Benzyl Amines under Additive-Free Conditions. ACS Catalysis, 2018, 8, 738-741.	11.2	28
172	A Convenient FeCl ₃ â€Mediated Synthesis of 5â€Trifluoromethylâ€1,2,4â€ŧriazoles from Trifluoroacetimidoyl Chlorides and Hydrazides. Advanced Synthesis and Catalysis, 2020, 362, 5130-5134.	4.3	28
173	Ruthenium-Catalyzed Carbonylative Coupling of Anilines with Organoboranes by the Cleavage of Neutral Aryl C–N Bond. Organic Letters, 2020, 22, 2756-2760.	4.6	28
174	A General and Efficient Palladium atalyzed Carbonylative Synthesis of 2â€Aryloxazolines and 2â€Aryloxazines from Aryl Bromides. Chemistry - A European Journal, 2012, 18, 13619-13623.	3.3	27
175	Zinc-catalyzed benzylic C–H bond oxidation. Tetrahedron Letters, 2012, 53, 6123-6126.	1.4	27
176	Palladium atalyzed Carbonylative Negishiâ€ŧype Coupling of Aryl Iodides with Benzyl Chlorides. Chemistry - an Asian Journal, 2012, 7, 40-44.	3.3	27
177	Palladium-catalyzed oxidative carbonylative coupling of arylboronic acids with terminal alkynes to alkynones. Organic and Biomolecular Chemistry, 2014, 12, 5590-5593.	2.8	27
178	Regioselective synthesis of 2,3-dihydrobenzodioxepinones from epoxides and 2-bromophenols via palladium-catalyzed carbonylation. Chemical Communications, 2014, 50, 2114.	4.1	27
179	TBAI-catalyzed oxidative synthesis of benzamides from acetophenones and carbinols. Organic and Biomolecular Chemistry, 2014, 12, 6359-6362.	2.8	27
180	DBU-promoted carbonylative synthesis of 1,3-oxathiolan-2-ones from propargylic alcohols with TFBen as the CO source. Organic and Biomolecular Chemistry, 2018, 16, 1065-1067.	2.8	27

#	Article	IF	CITATIONS
181	Selectivity controllable divergent synthesis of α,β-unsaturated amides and maleimides from alkynes and nitroarenes via palladium-catalyzed carbonylation. Journal of Catalysis, 2019, 375, 519-523.	6.2	27
182	Copper atalyzed Substrate ontrolled Carbonylative Synthesis of αâ€Keto Amides and Amides from Alkyl Halides. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
183	Palladium-catalyzed synthesis of isoindoloquinazolinones via dicarbonylation of 1,2-dibromoarenes. Organic and Biomolecular Chemistry, 2014, 12, 5835-5838.	2.8	26
184	The first zinc-catalyzed oxidation of sulfides to sulfones using H ₂ O ₂ as green oxidant. RSC Advances, 2014, 4, 29273-29275.	3.6	26
185	Oxidative cleavage of benzylic C–N bonds under metal-free conditions. Organic and Biomolecular Chemistry, 2014, 12, 7486-7488.	2.8	26
186	An unexpected copper-catalyzed carbonylative acetylation of amines. Chemical Communications, 2017, 53, 142-144.	4.1	26
187	Convenient and General Zinc atalyzed Borylation of Aryl Diazonium Salts and Aryltriazenes under Mild Conditions. ChemistryOpen, 2017, 6, 345-349.	1.9	26
188	The Design of an In–Ex Tube for Gas Related Organic Reactions. Organic Process Research and Development, 2017, 21, 1869-1871.	2.7	26
189	Palladium-catalyzed carbonylative Sonogashira coupling of aryl diazonium salts with formic acid as the CO source: the effect of 1,3-butadiene. Catalysis Science and Technology, 2017, 7, 4924-4928.	4.1	26
190	A sustainable procedure toward alkyl arylacetates: palladium-catalysed direct carbonylation of benzyl alcohols in organic carbonates. Green Chemistry, 2018, 20, 969-972.	9.0	26
191	Copper-Catalyzed Carbonylative Synthesis of β-Homoprolines from <i>N</i> -Fluoro-sulfonamides. Organic Letters, 2020, 22, 1889-1893.	4.6	26
192	A convenient palladium-catalyzed carbonylative synthesis of quinazolines from 2-aminobenzylamine and aryl bromides. RSC Advances, 2014, 4, 56502-56505.	3.6	25
193	Convenient palladium-catalyzed carbonylative synthesis of caprolactam and butyrolactam derived phthalimides and amides by using DBU and DBN as the nitrogen source. Tetrahedron Letters, 2015, 56, 342-345.	1.4	25
194	Ruthenium atalyzed Conjugate Hydrogenation of α,βâ€Enones by in situ Generated Dihydrogen from Paraformaldehyde and Water. European Journal of Organic Chemistry, 2015, 2015, 331-335.	2.4	25
195	Palladium atalyzed Oxidative Carbonylation of Aromatic Câ^'H Bonds with Alcohols using Molybdenum Hexacarbonyl as the Carbon Monoxide Source. Advanced Synthesis and Catalysis, 2016, 358, 2855-2859.	4.3	25
196	Palladium atalyzed Carbonylative Synthesis of 2,3â€Disubstituted Chromones. Advanced Synthesis and Catalysis, 2016, 358, 466-479.	4.3	25
197	Copper atalyzed Oxidative Dehydrogenative C(sp ³)â^'H Bond Amination of (Cyclo)Alkanes using NHâ€Heterocycles as Amine Sources. ChemSusChem, 2017, 10, 3075-3082.	6.8	25
198	Pd/C atalyzed Aminocarbonylation of Aryl Iodides with Anthranils in Water Using Mo(CO) ₆ as the CO Source. Chemistry - A European Journal, 2017, 23, 15026-15029.	3.3	25

#	Article	IF	CITATIONS
199	Copper-catalyzed intra- and intermolecular carbonylative transformation of remote C(sp3) H bonds in N-fluoro-sulfonamides. Journal of Catalysis, 2019, 377, 507-510.	6.2	25
200	More than a CO source: palladium-catalyzed carbonylative synthesis of butenolides from propargyl alcohols and TFBen. Organic Chemistry Frontiers, 2019, 6, 3158-3161.	4.5	25
201	Palladiumâ€Catalyzed Carbonylative Coupling of Aryl Iodides and Benzyl Acetylenes to 3â€Alkylidenefuranâ€2â€ones under Mild Conditions and Its Density Functional Theory Modeling. Chemistry - A European Journal, 2012, 18, 16177-16185.	3.3	24
202	Palladium-catalyzed carbonylative coupling reactions of aryl iodides with hexamethyldisilane (HMDS) to benzoyl silanes. Tetrahedron Letters, 2012, 53, 582-584.	1.4	24
203	Metal-free oxidation of benzyl amines to imines. Tetrahedron Letters, 2013, 54, 3158-3159.	1.4	24
204	Nickel-Catalyzed Carbonylative Synthesis of Functionalized Alkyl Iodides. IScience, 2018, 8, 175-182.	4.1	24
205	Nickel-Catalyzed Molybdenum-Promoted Carbonylative Synthesis of Benzophenones. Journal of Organic Chemistry, 2018, 83, 6788-6792.	3.2	24
206	Copper-Catalyzed Carbonylative Synthesis of β-Boryl Amides via Boroamidation of Alkenes. CCS Chemistry, 2021, 3, 2643-2654.	7.8	24
207	Synthesis of 5-trifluoromethyl-1,2,3-triazoles <i>via</i> base-mediated cascade annulation of diazo compounds with trifluoroacetimidoyl chlorides. Organic Chemistry Frontiers, 2021, 8, 3440-3445.	4.5	24
208	Palladiumâ€Catalyzed Aminocarbonylation of <i>N</i> â€Chloroamines with Boronic Acids. Chemistry - A European Journal, 2015, 21, 7374-7378.	3.3	23
209	Potassium <i>tert</i> â€Butoxideâ€Promoted Synthesis of 1â€Aminoisoquinolines from 2â€Methylbenzonitriles and Benzonitriles under Catalystâ€Free Conditions. Advanced Synthesis and Catalysis, 2016, 358, 2179-2185.	4.3	23
210	A general iodine-mediated synthesis of primary sulfonamides from thiols and aqueous ammonia. Organic and Biomolecular Chemistry, 2016, 14, 6951-6954.	2.8	23
211	Palladium-catalyzed carbonylative C–H activation of arenes with norbornene as the coupling partner. Journal of Organometallic Chemistry, 2016, 803, 9-12.	1.8	23
212	A copper-catalyzed carbonylative four-component reaction of ethene and aliphatic olefins. Chemical Communications, 2018, 54, 1984-1987.	4.1	23
213	Site-Selective Carbonylative Synthesis of Structurally Diverse Lactams from Heterocyclic Amines with TFBen as the CO Source. Journal of Organic Chemistry, 2019, 84, 14297-14305.	3.2	23
214	Iron-catalyzed carbonylative alkyl-acylation of heteroarenes. Journal of Catalysis, 2019, 372, 272-276.	6.2	23
215	Copper-catalyzed enantioselective carbonylation toward α-chiral secondary amides. Chemical Science, 2021, 12, 12676-12681.	7.4	23
216	Copper atalyzed Alkoxycarbonylation of Alkanes with Alcohols. ChemSusChem, 2017, 10, 1341-1345.	6.8	22

#	Article	IF	CITATIONS
217	Copper atalyzed Carbonylative Crossâ€Coupling of Arylboronic Acids with <i>N</i> hloroamines for the Synthesis of Aryl Amides. European Journal of Organic Chemistry, 2017, 2017, 1769-1772.	2.4	22
218	Borylation of aryldiazonium salts at room temperature in an aqueous solution under catalyst-free conditions. Tetrahedron Letters, 2017, 58, 3851-3853.	1.4	22
219	Iron-catalyzed carbonylative cyclization of γ,δ-unsaturated aromatic oxime esters to functionalized pyrrolines. Chemical Communications, 2020, 56, 7045-7048.	4.1	22
220	Palladium atalyzed Carbonylative Synthesis of 2â€(Trifluoromethyl)quinazolinâ€4(3 <i>H</i>)â€ones from Trifluoroacetimidoyl Chlorides and Nitro Compounds. Advanced Synthesis and Catalysis, 2021, 363, 1417-1426.	4.3	22
221	Nickel-catalyzed reductive aminocarbonylation of vinyl triflates with nitro compounds for the synthesis of α,β-unsaturated amides. Organic Chemistry Frontiers, 2021, 8, 6974-6978.	4.5	22
222	Convenient copper-mediated Chan–Lam coupling of 2-aminopyridine: facile synthesis of N-arylpyridin-2-amines. Tetrahedron Letters, 2015, 56, 4843-4847.	1.4	21
223	Palladium atalyzed Construction of Amidines from Arylboronic Acids under Oxidative Conditions. Chemistry - A European Journal, 2016, 22, 7743-7746.	3.3	21
224	Synthesis of quinazolinones from o -aminobenzamides and benzyl amines under metal-free conditions. Chinese Chemical Letters, 2016, 27, 21-24.	9.0	21
225	Palladium atalyzed Carbonylative Synthesis of Amides from Aryltriazenes under Additiveâ€Free Conditions. European Journal of Organic Chemistry, 2017, 2017, 3992-3995.	2.4	21
226	Copper-catalyzed carbonylative transformations of indoles with hexaketocyclohexane. Chemical Communications, 2018, 54, 4798-4801.	4.1	21
227	Liganden―und lösungsmittelkontrollierte regio―und chemodivergente Carbonylierungen. Angewandte Chemie, 2018, 130, 1166-1174.	2.0	21
228	Selectivity Controlled Palladium-Catalyzed Carbonylative Synthesis of Propiolates and Chromenones from Phenols and Alkynes. Organic Letters, 2018, 20, 3422-3425.	4.6	21
229	Palladium-Catalyzed Oxidative Carbonylative Coupling of Arylallenes, Arylboronic Acids, and Nitroarenes. Organic Letters, 2019, 21, 8215-8218.	4.6	21
230	Ironâ€Catalyzed Synthesis of Dihydronaphthalenones from Aromatic Oxime Esters. Advanced Synthesis and Catalysis, 2019, 361, 3223-3227.	4.3	21
231	Deaminative carbonylative coupling of alkylamines with styrenes under transition-metal-free conditions. Chemical Communications, 2020, 56, 9182-9185.	4.1	21
232	Silver-Mediated [3 + 2] Cycloaddition of Azomethine Ylides with Trifluoroacetimidoyl Chlorides for the Synthesis of 5-(Trifluoromethyl)imidazoles. Journal of Organic Chemistry, 2021, 86, 4361-4370.	3.2	21
233	A Novel Double Carbonylation Reaction of Aryl Halides: Selective Synthesis of 5â€Arylfuranones. Chemistry - A European Journal, 2013, 19, 12959-12964.	3.3	20
234	Synthesis of Thioethers and Thioesters with Alkyl Arylsulfinates as the Sulfenylation Agent under Metalâ€Free Conditions. Chemistry - an Asian Journal, 2016, 11, 3503-3507.	3.3	20

#	Article	IF	CITATIONS
235	Palladiumâ€Catalyzed Carbonylative Cyclization of Azoarenes. ChemCatChem, 2017, 9, 3637-3640.	3.7	20
236	Versatile palladium-catalyzed double carbonylation of aryl bromides. Chemical Communications, 2017, 53, 12422-12425.	4.1	20
237	Selective nickel-catalyzed dehydrogenative–decarboxylative formylation of indoles with glyoxylic acid. Organic and Biomolecular Chemistry, 2018, 16, 3707-3710.	2.8	20
238	Palladium atalyzed Carbonylative Homocoupling of Aryl Iodides for the Synthesis of Symmetrical Diaryl Ketones with Formic Acid. ChemCatChem, 2018, 10, 173-177.	3.7	20
239	Palladium-Catalyzed Synthesis of 1,2-Diketones from Aryl Halides and Organoaluminum Reagents Using <i>tert</i> -Butyl Isocyanide as the CO Source. Organic Letters, 2020, 22, 636-641.	4.6	20
240	HMF and furfural: Promising platform molecules in rhodium-catalyzed carbonylation reactions for the synthesis of furfuryl esters and tertiary amides. Journal of Catalysis, 2020, 381, 215-221.	6.2	20
241	Synthesis of 3 <i>H</i> -1,2,4-Triazol-3-ones via NiCl ₂ -Promoted Cascade Annulation of Hydrazonoyl Chlorides and Sodium Cyanate. Organic Letters, 2021, 23, 2359-2363.	4.6	20
242	Copper-mediated [3 + 2] cycloaddition of trifluoroacetimidoyl chlorides and N-isocyanoiminotriphenylphosphorane for the synthesis of 3-trifluoromethyl-1,2,4-triazoles. Organic Chemistry Frontiers, 2021, 8, 5040-5044.	4.5	20
243	Metal-free oxidative cyclization of trifluoroacetimidohydrazides with methylhetarenes: a facile access to 3-hetaryl-5-trifluoromethyl-1,2,4-triazoles. Organic Chemistry Frontiers, 2021, 8, 4490-4495.	4.5	20
244	Toward Greener Oxidative Transformations: Baseâ€Metal Catalysts and Metalâ€Free Reactions. Chemical Record, 2015, 15, 949-963.	5.8	19
245	Palladium atalyzed Selective Synthesis of Perfluoroalkylated Enynes from Perfluoroalkyl Iodides and Alkynes. European Journal of Organic Chemistry, 2017, 2017, 2940-2943.	2.4	19
246	Palladium atalyzed Cross oupling of Arylboronic Acid and Benzonitriles Using DMSO as the Methylene Source. Asian Journal of Organic Chemistry, 2018, 7, 2045-2048.	2.7	19
247	From â€~Gift' to gift: producing organic solvents from CO ₂ . Green Chemistry, 2020, 22, 8169-8182.	9.0	19
248	lron-catalyzed carbonylative cyclization of \hat{I}^3, \hat{I} -unsaturated aromatic oxime esters with amines. Chemical Communications, 2020, 56, 14605-14608.	4.1	19
249	Cu/Pd-catalyzed borocarbonylative trifunctionalization of alkynes and allenes: synthesis of β-geminal-diboryl ketones. Science China Chemistry, 2021, 64, 2142-2153.	8.2	19
250	Nickel-Catalyzed One-Pot Carbonylative Synthesis of 2-Mono- and 2,3-Disubstituted Thiochromenones from 2-Bromobenzenesulfonyl Chlorides and Alkynes. Organic Letters, 2021, 23, 6589-6593.	4.6	19
251	TFBen (Benzeneâ€1,3,5â€triyl triformate): A Powerful and Versatile CO Surrogate. Chemical Record, 2022, 22, .	5.8	19
252	Palladium-catalyzed carbonylative transformation of aryl iodides and sulfonyl chlorides: convenient access to thioesters. Organic Chemistry Frontiers, 2020, 7, 885-889.	4.5	19

#	Article	IF	CITATIONS
253	Zincâ€Catalyzed Oxidative Transformation of Benzylic Ethers: A General Procedure for Aldehyde Synthesis. Asian Journal of Organic Chemistry, 2012, 1, 214-217.	2.7	18
254	Base-promoted synthesis of dibenzoxazepinamines and quinazolinimines under metal-free conditions. Green Chemistry, 2015, 17, 4522-4526.	9.0	18
255	3-Acylindoles Synthesis: Ruthenium-Catalyzed Carbonylative Coupling of Indoles and Aryl Iodides. Organic Letters, 2017, 19, 4680-4683.	4.6	18
256	A general and convenient palladium-catalyzed synthesis of benzylideneindolin-3-ones with formic acid as the CO source. Organic and Biomolecular Chemistry, 2017, 15, 6905-6908.	2.8	18
257	Palladium-catalyzed carbonylative bis(indolyl)methanes synthesis with TFBen as the CO source. Journal of Catalysis, 2018, 362, 74-77.	6.2	18
258	Carbonylative Transformation of Allylarenes with CO Surrogates: Tunable Synthesis of 4-Arylbutanoic Acids, 2-Arylbutanoic Acids, and 4-Arylbutanals. Organic Letters, 2019, 21, 5699-5703.	4.6	18
259	Copper-catalyzed carbonylative catenation of olefins: Direct synthesis of γ-boryl esters. CheM, 2022, 8, 1982-1992.	11.7	18
260	Utilizing an Encapsulated Solution of Reagents to Achieve the Four omponent Synthesis of (Benzo)Thiophene Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 941-946.	4.3	17
261	Pd/C-Catalyzed Carbonylative Synthesis of 2-Aminobenzoxazinones from 2-lodoaryl Azides and Amines. Organic Letters, 2019, 21, 3242-3246.	4.6	17
262	Copper-catalyzed carbonylative synthesis of pyrrolidine-containing amides from γ,δ-unsaturated aromatic oxime esters. Organic Chemistry Frontiers, 2020, 7, 2986-2990.	4.5	17
263	Palladium-catalyzed double-carbonylative cyclization of propargyl alcohols and aryl triflates to expedite construction of 4-aroyl-furan-2(5 <i>H</i>)-ones. Organic Chemistry Frontiers, 2020, 7, 2757-2760.	4.5	17
264	Chelating Group Enabled Palladiumâ€Catalyzed Regiodivergent Carbonylative Synthesis of 2,3â€Dihydroquinolinâ€4(1 <i>H</i>)â€ones. Chemistry - A European Journal, 2020, 26, 14565-14569.	3.3	17
265	Copper atalyzed Borylative Methylation of Alkyl Iodides with CO as the C1 Source: Advantaged by Faster Reaction of CuH over CuBpin. Angewandte Chemie - International Edition, 2021, 60, 11730-11734.	13.8	17
266	Synthesis of 5â€Trifluoromethylâ€1,2,4â€Triazoles via Metalâ€Free Annulation of Trifluoroacetimidohydrazides and Methyl Ketones. Advanced Synthesis and Catalysis, 2021, 363, 3060-3069.	4.3	17
267	Nickel-catalyzed cascade carbonylative synthesis of <i>N</i> -benzoyl indoles from 2-nitroalkynes and aryl iodides. Organic Chemistry Frontiers, 2021, 8, 6541-6545.	4.5	17
268	Controllable access to trifluoromethyl-containing indoles and indolines: palladium-catalyzed regioselective functionalization of unactivated alkenes with trifluoroacetimidoyl chlorides. Chemical Science, 2022, 13, 3526-3532.	7.4	17
269	Palladium-Catalyzed Carbonylative Synthesis of N-Benzoylindoles with Mo(CO)6 as the Carbon Monoxide Source. Synthesis, 2015, 47, 2641-2646.	2.3	16
270	Pd/C-catalyzed reductive homo-coupling of iodobenzene with 5-(hydromethyl)furfural as the reductant: a case study. Journal of Molecular Catalysis A, 2015, 406, 94-96.	4.8	16

#	Article	IF	CITATIONS
271	Synthesis of quinazolinimines and quinazolinamines from 2-fluorobenzonitriles under catalyst-free conditions. Organic and Biomolecular Chemistry, 2015, 13, 10656-10662.	2.8	16
272	Palladium atalyzed Hydroxycarbonylation of Aryl Halides with the <i>inâ€situ</i> Generation of CO and H ₂ O. ChemistrySelect, 2016, 1, 1702-1704.	1.5	16
273	An Efficient Rhodiumâ€Catalyzed Carbonylative Annulation of Internal Alkynes and Anilines To Produce Maleimides. ChemCatChem, 2016, 8, 3710-3713.	3.7	16
274	Palladium-catalyzed synthesis of quinolin-2(1 <i>H</i>)-ones: the unexpected reactivity of azodicarboxylate. Organic and Biomolecular Chemistry, 2018, 16, 1632-1635.	2.8	16
275	Carbonylative Synthesis of 3-Substituted Thiochromenones via Rhodium-Catalyzed [3 + 2 + 1] Cyclization of Different Aromatic Sulfides, Alkynes, and Carbon Monoxide. Journal of Organic Chemistry, 2018, 83, 13612-13617.	3.2	16
276	Copper/iron co-catalyzed alkoxycarbonylation of unactivated alkyl bromides. Communications Chemistry, 2018, 1, .	4.5	16
277	Cobalt-Catalyzed Alkoxycarbonylation of Epoxides to β-Hydroxyesters. Journal of Organic Chemistry, 2019, 84, 9907-9912.	3.2	16
278	Palladium-catalyzed double carbonylation of propargyl amines and aryl halides to access 1-aroyl-3-aryl-1,5-dihydro-2 <i>H</i> -pyrrol-2-ones. Organic Chemistry Frontiers, 2020, 7, 1006-1010.	4.5	16
279	Palladium-catalyzed carbonylative synthesis of 5-trifluoromethyl-1,2,4-triazoles from trifluoroacetimidohydrazides and aryl iodides. Organic Chemistry Frontiers, 0, , .	4.5	16
280	Palladium atalyzed Carbonylative Fourâ€Component Synthesis of βâ€Perfluoroalkyl Amides. Chemistry - A European Journal, 2021, 27, 17682-17687.	3.3	16
281	Copper-catalyzed hydroformylation and hydroxymethylation of styrenes. Chemical Science, 2021, 12, 14937-14943.	7.4	16
282	Cyclen-catalyzed Henry reaction under neutral conditions. Tetrahedron Letters, 2010, 51, 4555-4557.	1.4	15
283	A Convenient Palladium atalyzed Aminocarbonylation of Aryl Iodides to Primary Amides under Gasâ€Free Conditions. European Journal of Organic Chemistry, 2017, 2017, 7222-7225.	2.4	15
284	Selenium-Catalyzed Carbonylative Synthesis of 3,4-Dihydroquinazolin-2(1H)-one Derivatives with TFBen as the CO Source. ACS Combinatorial Science, 2019, 21, 573-577.	3.8	15
285	Solar-driven conversion of arylboronic acids to phenols using metal-free heterogeneous photocatalysts. Journal of Catalysis, 2019, 378, 63-67.	6.2	15
286	Direkte Borylierung der Câ€Hâ€Bindungen von (Hetero)Arenen: von Edelmetallkatalysatoren zur metallfreien Katalyse. Angewandte Chemie, 2020, 132, 1786-1790.	2.0	15
287	Pd/Cu-Catalyzed amide-enabled selectivity-reversed borocarbonylation of unactivated alkenes. Chemical Science, 2021, 12, 10341-10346.	7.4	15
288	Palladium atalyzed Thiocarbonylation of Benzyl Chlorides with Sulfonyl Chlorides for the Synthesis of Arylacetyl Thioesters. Advanced Synthesis and Catalysis, 2021, 363, 2541-2545.	4.3	15

#	Article	IF	CITATIONS
289	Copperâ€Catalyzed Decarbonylative Cyclization of Isatins and Trifluoroacetimidohydrazides for the Synthesis of 2â€(5â€Trifluoromethylâ€1,2,4â€triazolâ€3â€yl)anilines. Advanced Synthesis and Catalysis, 2022, 3 1044-1049.	6 4, 3	15
290	Catalyst-controlled selective borocarbonylation of benzylidenecyclopropanes: regiodivergent synthesis of Î ³ -vinylboryl ketones and Î ² -cyclopropylboryl ketones. Chemical Science, 2022, 13, 4321-4326.	7.4	15
291	Palladium-Catalyzed Carbonylation of Disulfides and Ethylene: Synthesis of β-Thiopropionate Thioesters. Organic Letters, 2022, 24, 1848-1852.	4.6	15
292	Palladiumâ€Catalyzed Carbonylative Dimerization of Styrenes to 1,5â€Diarylpentâ€1â€enâ€3â€ones. Chemistry - Asian Journal, 2012, 7, 1199-1202.	an 3.3	14
293	Exploring the coordination chemistry of 2-picolinic acid to zinc and application of the complexes in catalytic oxidation chemistry. Inorganic Chemistry Communication, 2014, 46, 320-323.	3.9	14
294	Base-regulated tunable synthesis of pyridobenzoxazepinones and pyridobenzoxazines. Catalysis Science and Technology, 2015, 5, 4433-4443.	4.1	14
295	Transition Metal-free Methylation of Amines with Formaldehyde as the Reductant and Methyl Source. Chimia, 2015, 69, 345.	0.6	14
296	Iridium atalyzed Carbonylative Synthesis of Chromenones from Simple Phenols and Internal Alkynes at Atmospheric Pressure. Angewandte Chemie, 2016, 128, 14357-14360.	2.0	14
297	Selective Preparation of Xanthones from 2-Bromofluorobenzenes and Salicylaldehydes via Palladium-Catalyzed Acylation–SNAr Approach. Synlett, 2016, 27, 1269-1273.	1.8	14
298	Palladiumâ€Catalyzed Carbonylative Cyclization of Terminal Alkynes and Anilines to 3â€Substituted Maleimides. Advanced Synthesis and Catalysis, 2018, 360, 3376-3380.	4.3	14
299	A Convenient Palladiumâ€Catalyzed Carbonylative Synthesis of (<i>E</i>)â€3â€Benzylidenechromanâ€4â€ones. Chemistry - A European Journal, 2019, 25, 3521-3524.	3.3	14
300	Palladium atalyzed Tunable Carbonylative Synthesis of Enones and Benzofulvenes. Chemistry - A European Journal, 2019, 25, 8696-8700.	3.3	14
301	Rhodium-Catalyzed Carbonylative Synthesis of Benzosilinones. Organic Letters, 2019, 21, 2899-2902.	4.6	14
302	Selenium-Catalyzed Carbonylative Synthesis of 2-Benzimidazolones from 2-Nitroanilines with TFBen as the CO Source. European Journal of Organic Chemistry, 2019, 2019, 5161-5164.	2.4	14
303	Copperâ€Catalyzed Carbonylative Hydroamidation of Styrenes to Branched Amides. Angewandte Chemie, 2020, 132, 22627-22631.	2.0	14
304	Radical Carbonylation under Low <scp>CO</scp> Pressure: Synthesis of Esters from Activated Alkylamines at Transition <scp>Metalâ€Free</scp> Conditions. Chinese Journal of Chemistry, 2021, 39, 927-932.	4.9	14
305	Elemental Sulfur and Dimethyl Sulfoxideâ€Promoted Oxidative Cyclization of Trifluoroacetimidohydrazides with Methylhetarenes for the Synthesis of 3â€Hetaryl â€5â€trifluoromethylâ€1,2,4â€triazoles. Chinese Journal of Chemistry, 2021, 39, 3443.	4.9	14
306	Palladium-Catalyzed Reductive Aminocarbonylation of Benzylammonium Triflates with <i>o</i> -Nitrobenzaldehydes for the Synthesis of 3-Arylquinolin-2(1 <i>H</i>)-ones. Journal of Organic Chemistry, 2021, 86, 13824-13832.	3.2	14

#	Article	IF	CITATIONS
307	Transition-Metal-Catalyzed Carbonylative Multifunctionalization of Alkynes. Journal of Organic Chemistry, 2023, 88, 4975-4994.	3.2	14
308	Visible light-induced perfluoroalkylative carbonylation of unactivated alkenes. Journal of Catalysis, 2022, 413, 214-220.	6.2	14
309	Sequential one-pot synthesis of benzoxazoles from aryl bromides: successive palladium- and copper-catalyzed reactions. Tetrahedron Letters, 2013, 54, 3040-3042.	1.4	13
310	Palladium atalyzed Carbonylative Fourâ€Component Synthesis of Thiochromenones: The Advantages of a Reagent Capsule. Angewandte Chemie, 2016, 128, 5151-5154.	2.0	13
311	Manganese-catalyzed Sonogashira coupling of aryl iodides. Tetrahedron Letters, 2016, 57, 1706-1710.	1.4	13
312	Palladium-catalyzed carbonylative synthesis of alkynones from aryl iodides and phenylpropiolic acid employing formic acid as the CO source. Journal of Organometallic Chemistry, 2017, 838, 9-11.	1.8	13
313	Palladium-Catalyzed Decarboxylative Carbonylative Transformation of Benzyl Aryl Carbonates: Direct Synthesis of Aryl 2-Arylacetates. Organic Letters, 2018, 20, 5938-5941.	4.6	13
314	Palladium atalyzed Carbonylative Synthesis of <i>N</i> â€Heterocycles from 1 hloroâ€2â€fluorobenzenes. European Journal of Organic Chemistry, 2019, 2019, 2172-2175.	2.4	13
315	Nickel-catalyzed carbonylative synthesis of dihydrobenzofurans. Catalysis Communications, 2021, 148, 106170.	3.3	13
316	Copper-catalyzed borofunctionalization of styrenes with B ₂ pin ₂ and CO. Chemical Science, 2021, 12, 13777-13781.	7.4	13
317	Visibleâ€Lightâ€Induced Palladiumâ€Catalyzed Dehydrogenative Carbonylation of Amines to Oxalamides. Chemistry - A European Journal, 2021, 27, 5642-5647.	3.3	13
318	Transition-Metal-Catalyzed Carbonylative Synthesis and Functionalization of Heterocycles. Chinese Journal of Organic Chemistry, 2019, 39, 573.	1.3	13
319	Palladium-catalyzed cascade Heck-type thiocarbonylation for the synthesis of functionalized thioesters. Organic Chemistry Frontiers, 2022, 9, 1417-1421.	4.5	13
320	Palladium-catalyzed four-component difluoroalkylative carbonylation of aryl olefins and ethylene. Journal of Catalysis, 2022, 413, 163-167.	6.2	13
321	Carbonylative transformation of benzyl formates into alkyl 2-arylacetates in organic carbonates. Organic Chemistry Frontiers, 2019, 6, 3397-3400.	4.5	12
322	Manganese-catalyzed ring-opening carbonylation of cyclobutanol derivatives. Tetrahedron Letters, 2019, 60, 864-867.	1.4	12
323	Pd/C-Catalyzed Carbonylative Synthesis of α-Carbonyl-α′-Amide Sulfoxonium Ylides from Azides. Journal of Organic Chemistry, 2020, 85, 5733-5740.	3.2	12
324	Palladium-catalyzed carbonylative synthesis of α,β-unsaturated amides from aryl azides and alkenylaluminum reagent. Journal of Catalysis, 2020, 383, 160-163.	6.2	12

#	Article	IF	CITATIONS
325	Rhodium-catalyzed carbonylative coupling of alkyl halides with thiols: a radical process faster than easier nucleophilic substitution. Chemical Communications, 2021, 57, 1466-1469.	4.1	12
326	Nickel-catalyzed carbonylative domino cyclization of arylboronic acid pinacol esters with 2-alkynyl nitroarenes toward <i>N</i> -aroyl indoles. Organic Chemistry Frontiers, 2022, 9, 2685-2689.	4.5	12
327	Nickel-Catalyzed Carbonylative Synthesis of α,β-Unsaturated Thioesters from Vinyl Triflates and Arylsulfonyl Chlorides. Organic Letters, 2022, 24, 4009-4013.	4.6	12
328	Rhodium-catalyzed carbonylative synthesis of silyl-substituted indenones. Chemical Communications, 2017, 53, 13149-13152.	4.1	11
329	Palladium atalyzed Carbonylative Coupling of Aryl Iodides with Alkyl Bromides: Efficient Synthesis of Alkyl Aryl Ketones. Advanced Synthesis and Catalysis, 2018, 360, 4153-4160.	4.3	11
330	Convenient Carbonylative Synthesis of Seleniumâ€Substituted Vinyl Iodides: (<i>E</i>)â€5â€(Iodomethylene)â€1,3â€selenazolidinâ€2â€ones. European Journal of Organic Chemistry, 2019, 1553-1556.	2014),	11
331	Palladium-catalyzed four-component carbonylation of allenes, alcohols and nitroarenes. Journal of Catalysis, 2020, 381, 271-274.	6.2	11
332	Base-mediated [3+2] annulation of trifluoroacetimidoyl chlorides and isocyanides: An improved approach for regioselective synthesis of 5-trifluoromethyl-imidazoles. Tetrahedron, 2020, 76, 131168.	1.9	11
333	Palladium-catalyzed carbonylative cyclization of 2-alkynylanilines and aryl iodides to access N-acyl indoles. Organic Chemistry Frontiers, 2021, 8, 1926-1929.	4.5	11
334	A novel construction of acetamides from rhodium-catalyzed aminocarbonylation of DMC with nitro compounds. Chemical Communications, 2021, 57, 1955-1958.	4.1	11
335	Supported Palladiumâ€Catalyzed Carbonylative Synthesis of Diaryl Ketones from Aryl Bromides and Arylboronic Acids. Chemistry - an Asian Journal, 2021, 16, 2027-2030.	3.3	11
336	Oxidative Cyclization of Trifluoroacetimidohydrazides with Dâ€Clucose for the Metalâ€Free Synthesis of 3â€Trifluoromethylâ€1,2,4â€Triazoles. Advanced Synthesis and Catalysis, 2021, 363, 4982.	4.3	11
337	Practical Synthesis of Halogenated <i>N</i> â€Heterocycles via Electrochemical Anodic Oxidation of Unactivated Alkenes. European Journal of Organic Chemistry, 2021, 2021, 5831-5834.	2.4	11
338	Cobalt atalyzed Direct Aminocarbonylation of Ethers: Efficient Access to αâ€Amide Substituted Ether Derivatives. Angewandte Chemie - International Edition, 2022, , .	13.8	11
339	Supported palladium-catalyzed carbonylative cyclization of 2-bromonitrobenzenes and alkynes to access quinolin-4(1H)-ones. Journal of Catalysis, 2022, 408, 81-87.	6.2	11
340	KO ^t Bu-promoted synthesis of multi-substituted 4-aminopyrimidines from benzonitriles and aliphatic amides. RSC Advances, 2015, 5, 106444-106447.	3.6	10
341	Palladium-catalyzed carbonylative coupling of aryl iodides with an organocopper reagent: a straightforward procedure for the synthesis of aryl trifluoromethyl ketones. RSC Advances, 2016, 6, 57070-57074.	3.6	10
342	Oxidative Synthesis of Quinazolinones under Metalâ€free Conditions. Journal of Heterocyclic Chemistry, 2017, 54, 794-798.	2.6	10

#	Article	IF	CITATIONS
343	1,8â€Ðiazabicyclo[5.4.0]undecâ€7â€eneâ€Catalyzed Carbonylative Cyclization of Propargylic Alcohols with Elemental Sulfur. European Journal of Organic Chemistry, 2018, 2018, 1274-1276.	2.4	10
344	Direct synthesis of benzylic amines by palladium-catalyzed carbonylative aminohomologation of aryl halides. Communications Chemistry, 2018, 1, .	4.5	10
345	Palladium atalyzed Cascade Carbonylative Cyclization Reaction of Trifluoroacetimidoyl Chlorides and 2â€Iodoanilines: Toward 2â€{Trifluoromethyl)quinazolinâ€4(3H)â€ones Synthesis. ChemistrySelect, 2020, 5, 11072-11076.	1.5	10
346	Palladium-Catalyzed Carbonylative Synthesis of α-Branched Enones from Aryl Iodides and Arylallenes. Organic Letters, 2020, 22, 1160-1163.	4.6	10
347	The cascade coupling/iodoaminocyclization reaction of trifluoroacetimidoyl chlorides and allylamines: metal-free access to 2-trifluoromethyl-imidazolines. Organic and Biomolecular Chemistry, 2021, 19, 6115-6119.	2.8	10
348	Palladium-catalyzed carbonylative cyclization of benzyl chlorides with anthranils for the synthesis of 3-arylquinolin-2(1 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2021, 19, 3584-3588.	2.8	10
349	Copperâ€Catalyzed 1,2â€Trifluoromethylation Carbonylation of Unactivated Alkenes: Efficient Access to βâ€Trifluoromethylated Aliphatic Carboxylic Acid Derivatives. Angewandte Chemie, 2021, 133, 25991-25996.	2.0	10
350	Electrochemical oxidative cyclization of <i>N</i> -allylcarboxamides: efficient synthesis of halogenated oxazolines. New Journal of Chemistry, 2022, 46, 663-667.	2.8	10
351	Transition-metal-catalyzed carbonylative cross-coupling with alkyl carbon nucleophiles. Chem Catalysis, 2022, 2, 477-498.	6.1	10
352	Palladium-Catalyzed Direct Dicarbonylation of Amines with Ethylene to Imides. Organic Letters, 2022, 24, 451-456.	4.6	10
353	Copper-catalyzed hydroaminocarbonylation of benzylidenecyclopropanes: synthesis of γ,δ-unsaturated amides. Chemical Communications, 2022, 58, 6534-6537.	4.1	10
354	Catalyst-free synthesis of 2-aryl-1,2-dihydro-quinazolin-4(1H)-thiones from 2-aminobenzothio-amides and aldehydes in water. Organic and Biomolecular Chemistry, 2015, 13, 1150-1158.	2.8	9
355	Synthesis of <i>β</i> -Hydroxysulfides from Thiophenols and Disulfides with <i>tert</i> -Butyl Hydroperoxide as the Oxidant and Reactant. ChemistryOpen, 2016, 5, 315-318.	1.9	9
356	Nickel-catalysed carbonylative homologation of aryl iodides. Communications Chemistry, 2018, 1, .	4.5	9
357	Gold-Catalyzed Regiospecific Hydration of <i>N</i> -Tosyl Propargylic Amines. Organometallics, 2018, 37, 2837-2841.	2.3	9
358	Palladium-Catalyzed Carbonylative Coupling of Aryl Iodides with Alkenylaluminum Reagents. Organic Letters, 2019, 21, 7624-7629.	4.6	9
359	1â€Arylvinyl formats: A New CO Source and Ketone Source in Carbonylative Synthesis of Chalcone Derivatives. ChemCatChem, 2019, 11, 5252-5255.	3.7	9
360	The development of new pigments: Colorful g-C3N4-based catalysts for nicotine removal. Applied Catalysis B: Environmental, 2019, 254, 500-509.	20.2	9

#	Article	IF	CITATIONS
361	Zincâ \in catalyzed transformation of diarylphosphoryl azides to diarylphosphate esters and amides. Chemistry - an Asian Journal, 2020, 15, 1540-1543.	3.3	9
362	Ruthenium-catalyzed Suzuki coupling of anilines with alkenyl borates via selective aryl C N bond cleavage. Catalysis Communications, 2020, 140, 106009.	3.3	9
363	Palladium atalyzed Carbonylative Synthesis of 1,5â€Dihydroâ€2 <i>H</i> â€pyrrolâ€2â€ones from Propargyl Amines and Benzyl Chlorides. Advanced Synthesis and Catalysis, 2021, 363, 1878-1881.	4.3	9
364	The first bismuth self-mediated oxidative carbonylative coupling reaction via Billl/BiV redox intermediates. Journal of Catalysis, 2021, 397, 201-204.	6.2	9
365	In situ grown palladium nanoparticles on polyester fabric as easy-separable and recyclable catalyst for Suzuki-Miyaura reaction. Catalysis Communications, 2021, 157, 106328.	3.3	9
366	Novel Isoquinolinamine and Isoindoloquinazolinone Compounds Exhibit Antiproliferative Activity in Acute Lymphoblastic Leukemia Cells. Biomolecules and Therapeutics, 2019, 27, 492-501.	2.4	9
367	Copper-Catalyzed Alkoxycarbonylation of Alkyl Iodides for the Synthesis of Aliphatic Esters: Hydrogen Makes the Difference. Organic Letters, 2021, 23, 8062-8066.	4.6	9
368	Palladium-catalyzed reductive desulfonative aminocarbonylation of benzylsulfonyl chlorides with nitroarenes towards arylacetamides. Organic Chemistry Frontiers, 2022, 9, 2079-2083.	4.5	9
369	Cobalt-Catalyzed Four-Component Carbonylation of Methylarenes with Ethylene and Alcohols. Journal of Organic Chemistry, 2022, 87, 6371-6377.	3.2	9
370	Palladium-Catalyzed Regio- and Stereoselective Hydroaminocarbonylation of Unsymmetrical Internal Alkynes toward α,β-Unsaturated Amides. Organic Letters, 2022, 24, 4464-4469.	4.6	9
371	Palladium atalyzed Synthesis of Furans from Double Carbonylative Coupling of Aryl Halides with Terminal Alkynes. Asian Journal of Organic Chemistry, 2013, 2, 135-139.	2.7	8
372	Facile benzofuran synthesis: Palladium-catalyzed carbonylative Suzuki coupling of methyl 2-(2-iodophenoxy)acetates under CO gas-free conditions. Tetrahedron Letters, 2017, 58, 4153-4155.	1.4	8
373	Palladium-Catalyzed Carbonylative Synthesis of Heterocycles. Advances in Heterocyclic Chemistry, 2017, 121, 207-246.	1.7	8
374	Carbonylative coupling of <i>N</i> -chloroamines with alcohols: synthesis of esterification reagents. Organic and Biomolecular Chemistry, 2018, 16, 2643-2646.	2.8	8
375	Palladium atalyzed Carbonylative Synthesis of Benzosilinones from (2â€lodophenyl)Hydrosilanes and Terminal Alkynes. Advanced Synthesis and Catalysis, 2019, 361, 3441-3445.	4.3	8
376	Sulfonylation of Bismuth Reagents with Sulfinates or SO ₂ through Bi ^{III} /Bi ^V Intermediates. Organometallics, 2021, 40, 2400-2404.	2.3	8
377	Ruthenium pincer complex-catalyzed heterocycle compatible alkoxycarbonylation of alkyl iodides: substrate keeps the catalyst active. Chemical Science, 2022, 13, 2481-2486.	7.4	8
378	Palladium-Catalyzed Denitrogenative Carbonylation of Benzotriazoles with Cr(CO) ₆ as the Carbonyl Source. Organometallics, 2022, 41, 1731-1737.	2.3	8

#	Article	IF	CITATIONS
379	C2-Symmetric dialkoxyphosphoramide and dialkoxythiophosphoramide derivatives of (1R,) Tj ETQq1 1 0.784314 addition reactions of diethylzinc to arylaldehydes. Chirality, 2002, 14, 90-95.	rgBT /(2.6	Overlock 10 Tf 7
380	Palladium-catalyzed Heck reaction of in-situ generated benzylic iodides and styrenes. Tetrahedron Letters, 2017, 58, 3846-3850.	1.4	7
381	Ironâ€Catalyzed Regioselective Synthesis of 3â€Arylindoles. ChemistrySelect, 2017, 2, 6689-6692.	1.5	7
382	Convenient Palladium atalyzed Reductive Carbonylation of Aryl Bromides Under Gasâ€Free Conditions. European Journal of Organic Chemistry, 2018, 2018, 2780-2783.	2.4	7
383	Pd/C-catalyzed reductive carbonylation of nitroaromatics for the synthesis of unsymmetrical ureas: one-step synthesis of neburon. New Journal of Chemistry, 2018, 42, 12472-12475.	2.8	7
384	Phosphite-catalyzed alkoxycarbonylation of aryl diazonium salts. Organic and Biomolecular Chemistry, 2018, 16, 6180-6182.	2.8	7
385	Palladiumâ€Catalyzed Carbonylative Synthesis of <i>N</i> â€Acetyl Benzoxazinones. ChemCatChem, 2018, 10, 3415-3418.	3.7	7
386	Cobaltâ€Catalyzed Carbonylative Cyclization of Allyl Propargyl Ethers with Benzeneâ€1,3,5â€ŧriyl Triformate as the CO Source. Asian Journal of Organic Chemistry, 2019, 8, 238-241.	2.7	7
387	The Exploration of Aroyltrimethylgermane as Potent Synthetic Origins and Their Preparation. IScience, 2020, 23, 100771.	4.1	7
388	Heterogeneous Carbonylative Sonogashira Reaction Based on Pd/g ₃ N ₄ Catalyst by Using Formic Acid as the CO Source. ChemistrySelect, 2021, 6, 7037-7039.	1.5	7
389	Palladium-catalyzed cascade Heck-type cyclization and reductive aminocarbonylation for the synthesis of functionalized amides. Organic and Biomolecular Chemistry, 2022, 20, 2605-2608.	2.8	7
390	Palladium-Catalyzed Desulfonative Carbonylation of Thiosulfonates: Elimination of SO ₂ and Insertion of CO. Organic Letters, 2022, 24, 4820-4824.	4.6	7
391	A Straightforward Synthesis of Pyrazolines and Pyrazoles: Palladiumâ€Catalyzed Carbonylative Vinylation–Cyclocondensation Reactions of Aryl Halides. European Journal of Organic Chemistry, 2011, 2011, 4919-4924.	2.4	6
392	Palladium-catalyzed synthesis of primary benzamides from aryl bromides via a cyanation and hydration sequence. RSC Advances, 2015, 5, 21001-21004.	3.6	6
393	Palladium atalyzed Solventâ€Dependent Divergent Synthesis of Benzylformamides. Advanced Synthesis and Catalysis, 2018, 360, 3412-3417.	4.3	6
394	Photocatalytic Synthesis of Stilbenes via Cross oupling of Alkenyl Boronic Acids and Arenediazonium Tetrafluoroborate Salts. ChemPhotoChem, 2020, 4, 713.	3.0	6
395	Palladium-catalyzed directing group assisted and regioselectivity reversed cyclocarbonylation of arylallenes with 2-iodoanilines. Organic Chemistry Frontiers, 2021, 8, 792-798.	4.5	6
396	Palladium-catalyzed 1,2-amino carbonylation of 1,3-dienes with (<i>N</i> -SO ₂ Py)-2-iodoanilines: 2,3-dihydroquinolin-4(1 <i>H</i>)-ones synthesis. Organic Chemistry Frontiers, 2021, 8, 2429-2433.	4.5	6

#	Article	IF	CITATIONS
397	Hydroxy-, Alkoxy- and Aminocarbonylations of Câ \in "X Bonds. , 2013, , 13-52.		6
398	Manganese(III)â€Promoted Double Carbonylation of Anilines Toward αâ€Ketoamides Synthesis. Advanced Synthesis and Catalysis, 2022, 364, 487-492.	4.3	6
399	Copper atalyzed Substrateâ€Controlled Carbonylative Synthesis of αâ€Keto Amides and Amides from Alkyl Halides. Angewandte Chemie, 2022, 134, .	2.0	6
400	Carbonylierungen mit CO ₂ als COâ€Quelle und ReaktivitÃ t smodifikator. Angewandte Chemie, 2017, 129, 5485-5487.	2.0	5
401	A general and practical Lewis acids-catalyzed aryl formates synthesis. Molecular Catalysis, 2017, 433, 8-11.	2.0	5
402	Palladium catalyzed carbonylation of benzyl chlorides: Additive-controlled divergent synthesis of benzyl arylacetates and arylacetic acids. Journal of Catalysis, 2018, 368, 275-278.	6.2	5
403	Palladium-Catalyzed Synthesis of Aldehydes from Aryl Iodides and Formic acid with Propylphosphonic Anhydride as the Activator. Scientific Reports, 2018, 8, 8389.	3.3	5
404	Synthesis of Esters from Stable and Convenient Sulfoxonium Precursors under Catalyst- and Additive-Free Conditions. Synlett, 2019, 30, 1820-1824.	1.8	5
405	Carbonylative Acetylation of Heterocycles. European Journal of Organic Chemistry, 2020, 2020, 213-216.	2.4	5
406	Fourâ€Component Borocarbonylation of Vinylarenes Enabled by Cooperative Cu/Pd Catalysis: Access to βâ€Boryl Ketones and βâ€Boryl Vinyl Esters. Angewandte Chemie, 2020, 132, 17203-17209.	2.0	5
407	Ironâ€Catalyzed Synthesis of 2â€Aminofurans from 2â€Haloketones and Tertiary Amines or Enamines. European Journal of Organic Chemistry, 2020, 2020, 2605-2616.	2.4	5
408	Palladium-catalyzed carbonylative synthesis of 3-arylquinolin-2(1H)-ones from benzyl chlorides and o-nitrobenzaldehydes. Molecular Catalysis, 2021, 514, 111842.	2.0	5
409	Synthesis of Aryl Methyl Sulfides from Arysulfonyl Chlorides with Dimethyl Carbonate as the Solvent and C1 Source. European Journal of Organic Chemistry, 2021, 2021, 5219-5221.	2.4	5
410	Metal-free synthesis of 3-trifluoromethyl-1,2,4-triazoles via oxidative cyclization of trifluoroacetimidohydrazides with N,N-dimethylformamide as carbon synthons. Green Synthesis and Catalysis, 2022, 3, 385-388.	6.8	5
411	Carbonylative Heck Reactions. , 2013, , 133-146.		4
412	A metal-free three components procedure for the synthesis of perfluoroalkyl substituted amidines. Tetrahedron Letters, 2017, 58, 3751-3753.	1.4	4
413	Palladium-catalyzed construction of amidines from arylsilanes in the absence of a ligand under oxidative conditions. New Journal of Chemistry, 2018, 42, 10396-10399.	2.8	4
414	Isoquinolinamine FX-9 Exhibits Anti-Mitotic Activity in Human and Canine Prostate Carcinoma Cell Lines. International Journal of Molecular Sciences, 2019, 20, 5567.	4.1	4

#	Article	IF	CITATIONS
415	Palladium-catalyzed methylation of terminal alkynes. Catalysis Communications, 2020, 133, 105835.	3.3	4
416	Disulfide Promoted Câ^'P Bond Cleavage of Phosphoramide: "P―Surrogates to Synthesize Phosphonates and Phosphinates. Advanced Synthesis and Catalysis, 2020, 362, 4755-4760.	4.3	4
417	Rhodium-Catalyzed Carbonylative Synthesis of Aryl Salicylates from Unactivated Phenols. Organic Letters, 2020, 22, 6050-6054.	4.6	4
418	Copper-catalyzed borylative cyclization of $\hat{1}^3$, $\hat{1}^2$ -unsaturated aromatic oxime esters to (borylmethyl)pyrrolidines. Organic Chemistry Frontiers, 2020, 7, 3382-3386.	4.5	4
419	Pd/C-Catalyzed methoxycarbonylation of aryl chlorides. Molecular Catalysis, 2020, 493, 111043.	2.0	4
420	Ruthenium atalyzed <i>ortho</i> â€Alkenylation of Aroylgermanes. European Journal of Organic Chemistry, 2020, 2020, 2842-2845.	2.4	4
421	Synthesis of Linear α,β-Unsaturated Amides from Isocyanates and Alkenylaluminum Reagents. Synlett, 2020, 31, 788-792.	1.8	4
422	Ligandâ€Controlled Copperâ€Catalyzed Regiodivergent Carbonylative Synthesis of αâ€Amino Ketones and αâ€Boryl Amides from Imines and Alkyl Iodides. Angewandte Chemie, 2021, 133, 705-710.	2.0	4
423	Pincer Ligand Enhanced Rhodium atalyzed Carbonylation of Formaldehyde: Direct Ethylene Glycol Production. Asian Journal of Organic Chemistry, 2021, 10, 245-250.	2.7	4
424	Palladium-catalyzed carbonylative synthesis of aryl esters from <i>p</i> -benzoquinones and aryl triflates. Organic and Biomolecular Chemistry, 2021, 19, 7353-7356.	2.8	4
425	Pd/Cu atalyzed Defluorinative Carbonylative Coupling of Aryl Iodides and gem â€Difluoroalkenes: Efficient Synthesis of αâ€Fluorochalcones. Angewandte Chemie, 2021, 133, 8900-8904.	2.0	4
426	Ligandâ€Controlled Regiodivergent Thiocarbonylation of Alkynes toward Linear and Branched α,l²â€Unsaturated Thioesters. Angewandte Chemie, 2021, 133, 17315-17321.	2.0	4
427	Palladium atalyzed Perfluoroalkylative Carbonylation of Unactivated Alkenes: Access to βâ€Perfluoroalkyl Esters. Angewandte Chemie, 0, , .	2.0	4
428	Oxidative Carbonylation Reactions. , 2013, , 147-166.		4
429	Manganese(<scp>iii</scp>)-promoted thiocarbonylation of alkylborates with disulfides: synthesis of aliphatic thioesters. Organic and Biomolecular Chemistry, 2021, 19, 9654-9658.	2.8	4
430	Palladium-Catalyzed Reductive Aminocarbonylation of <i>o</i> -lodophenol-Derived Allyl Ethers with <i>o</i> -Nitrobenzaldehydes to 3-Alkenylquinolin-2(1 <i>H</i>)-ones. Organic Letters, 2022, 24, 2248-2252.	4.6	4
431	Synthesis of Pyrimidine. , 2017, , 5-54.		3
432	Synthesis of 1,3,4-Oxadiazoles via Annulation of Hydrazides and Benzene-1,3,5-triyl Triformate under Metal-Free Conditions. Synthesis, 2018, 50, 3238-3242.	2.3	3

#	Article	IF	CITATIONS
433	Palladium atalyzed Carbonylative Synthesis of Benzyl Benzoates Employing Benzyl Formates as Both CO Surrogates and Benzyl Alcohol Sources. European Journal of Organic Chemistry, 2019, 2019, 3776-3778.	2.4	3
434	Deaminative carbonylative thioesterification of activated alkylamines with thiophenols under transition-metal-free conditions. Organic Chemistry Frontiers, 2021, 8, 670-675.	4.5	3
435	Efficient synthesis of 2-trifluoromethyl-benzimidazoles via cascade annulation of trifluoroacetimidoyl chlorides and amines based on a heterogeneous copper doped g-C3N4 catalyst. Molecular Catalysis, 2021, 513, 111767.	2.0	3
436	Pdâ€Catalyzed Carbonylative Synthesis of 4 <i>H</i> â€Benzo[<i>d</i>][1,3]Oxazinâ€4â€Ones Using Benzeneâ€1,3,5â€Triyl Triformate as the CO Source. Chemistry - A European Journal, 2021, 27, 16219-16224.	3.3	3
437	Additive-Controlled Divergent Synthesis of Indole and 4H-Benzo[d][1,3]oxazine Derivatives: Palladium-Catalyzed Carbonylative Cyclization of 2-Alkynylanilines and Benzyl Chlorides. Journal of Organic Chemistry, 2022, , .	3.2	3
438	Cobaltâ€Catalyzed Direct Aminocarbonylation of Ethers: Efficient Access to αâ€Amide Substituted Ether Derivatives. Angewandte Chemie, 2022, 134, .	2.0	3
439	Cobalt-catalyzed carbonylative cyclization of N-(2-Vinylphenyl)nicotinamides to access (NH)-quinolin-2(1H)-ones. Molecular Catalysis, 2022, 524, 112267.	2.0	3
440	Palladium-catalyzed norbornene-mediated dehydrogenative annulation of 3-iodochromones with trifluoroacetimidoyl chlorides for the construction of trifluoromethyl-substituted chromeno[2,3-c]quinolin-12-ones. Molecular Catalysis, 2022, 524, 112320.	2.0	3
441	Synthesized by [2+2+1] Cyclization Reactions. , 2016, , 3-7.		2
442	Palladium-catalyzed carbonylative/decarboxylative cross-coupling of α-bromo-ketones with allylic alcohols to γ,δ-unsaturated ketones. Tetrahedron Letters, 2019, 60, 150991.	1.4	2
443	Palladium-Catalyzed Carbonylative Synthesis of Benzogerminones. Synlett, 2019, 30, 1592-1596.	1.8	2
444	Palladium-catalyzed carbonylative synthesis of arylacetamides from benzyl formates and tertiary amines. Organic Chemistry Frontiers, 2020, 7, 3406-3410.	4.5	2
445	Palladium/aluminium-cocatalyzed carbonylative synthesis of 2-chloroethyl benzoates from epoxides and aryl iodides. Journal of Organometallic Chemistry, 2020, 910, 121114.	1.8	2
446	Rhodium-catalyzed carbonylative dimerization of butyl acrylate: AÂmodel study. Journal of Organometallic Chemistry, 2020, 910, 121134.	1.8	2
447	Rhodium-catalyzed borylative carbon monoxide reduction to gem-diborylmethane. Catalysis Communications, 2021, 149, 106205.	3.3	2
448	Copper atalyzed Borylative Methylation of Alkyl Iodides with CO as the C1 Source: Advantaged by Faster Reaction of CuH over CuBpin. Angewandte Chemie, 2021, 133, 11836-11840.	2.0	2
449	Palladium-catalyzed carbonylative synthesis of quinazolines: Silane act as better nucleophile than amidine. Molecular Catalysis, 2021, 509, 111627.	2.0	2
450	Cobalt-catalyzed carbonylative cycloaddition of substituted diynes to access complexed polycyclic compounds. Organic Chemistry Frontiers, 2021, 8, 4188-4191.	4.5	2

#	Article	IF	CITATIONS
451	Carbonylative Sonogashira Reactions. , 2013, , 95-114.		2
452	Carbonylative C–H Activations. , 2013, , 115-132.		2
453	Palladiumâ€Catalyzed Carbonylative Synthesis of 1â€Acylâ€1,5â€dihydroâ€2 H â€pyrrolâ€2â€ones from Proparg and Acid Chlorides. ChemistrySelect, 2021, 6, 12220-12223.	yl Amines 1.5	2
454	Palladium-catalyzed aminocarbonylative cyclization of benzyl chlorides with 2-nitroaryl alkynes to construct indole derivatives. Molecular Catalysis, 2022, 524, 112302.	2.0	2
455	Cobalt-catalyzed C-H annulation of N-aroylpicolinamides with alkynes for (NH)-isoquinolones synthesis. Molecular Catalysis, 2022, 524, 112303.	2.0	2
456	Metal-free Synthesis of 5-Trifluoromethyl-1,2,4-triazoles via elemental sulfur promoted oxidative cyclization of trifluoroacetimidohydrazides with benzylic and aliphatic amines. Molecular Catalysis, 2022, 524, 112336.	2.0	2
457	Visible-light-induced defluorinative carbonylative coupling of alkyl iodides with α-trifluoromethyl substituted styrenes. Organic and Biomolecular Chemistry, 2022, 20, 5264-5269.	2.8	2
458	Nickelâ€Catalyzed Fourâ€Component Carbonylation of Ethers and Olefins: Direct Access to γâ€Oxy Esters and Amides. Angewandte Chemie, 0, , .	2.0	2
459	Palladium-catalyzed carbonylative synthesis of substituted cyclopentenones from aryl iodides and internal alkynes. Organic and Biomolecular Chemistry, 2019, 17, 5882-5885.	2.8	1
460	Palladium-catalyzed carbonylative transformation of phenols via in-situ triflyl exchangement. Journal of Catalysis, 2020, 389, 502-505.	6.2	1
461	Palladium-catalyzed carbonylation of iminoquinones and aryl iodides to access aryl <i>p</i> -amino benzoates. Organic and Biomolecular Chemistry, 2021, 19, 8246-8249.	2.8	1
462	A Discussion Between Carbonylation, Noncarbonylation and Decarbonylation. , 2013, , 215-221.		1
463	Carbonylative Coupling Reactions with Organometallic Reagents. , 2013, , 65-94.		1
464	Cobalt-catalyzed regioselective cycloaddition of unsymmetric diynes and nitriles to form substituted pyridines. Molecular Catalysis, 2021, 516, 111956.	2.0	1
465	Palladium-catalyzed carbonylation of propargyl diols with primary amines for the synthesis of functionalized acids. Journal of Organometallic Chemistry, 2021, 956, 122115.	1.8	1
466	Palladium-Catalyzed Carbonylative Synthesis of Six-Membered Heterocycles from Aryl Halides. Topics in Heterocyclic Chemistry, 2015, , 55-87.	0.2	0
467	Synthesized by [4+1] Cyclization Reactions. , 2016, , 33-37.		0

0

468 Synthesized by Intramolecular Cyclizations. , 2016, , 39-106.

#	Article	IF	CITATIONS
469	Synthesized by [3+2] Cyclization Reactions. , 2016, , 9-32.		0
470	Frontispiece: Palladium atalyzed Carbonylative Multicomponent Reactions. Chemistry - A European Journal, 2017, 23, .	3.3	0
471	Synthesis of Pyrazine. , 2017, , 55-71.		0
472	Synthesis of Pyridazine. , 2017, , 73-77.		0
473	Synthesis of Triazine. , 2017, , 79-93.		0
474	Front Cover: A Convenient Palladium-Catalyzed Aminocarbonylation of Aryl Iodides to Primary Amides under Gas-Free Conditions (Eur. J. Org. Chem. 48/2017). European Journal of Organic Chemistry, 2017, 2017, 7202-7202.	2.4	0
475	NHC ligand-powered palladium-catalyzed carbonylative C–S bond cleavage of vinyl sulfides: efficient access to tert-butyl arylacrylates. Organic and Biomolecular Chemistry, 2020, 18, 9796-9799.	2.8	0
476	Palladium-catalyzed carbonylative synthesis of acylstannanes from aryl iodides and hexamethyldistannane. Journal of Organometallic Chemistry, 2020, 923, 121351.	1.8	0
477	Evaluation of combination protocols of the chemotherapeutic agent FX-9 with azacitidine, dichloroacetic acid, doxorubicin or carboplatin on prostate carcinoma cell lines. PLoS ONE, 2021, 16, e0256468.	2.5	0
478	Applications in Total Synthesis. , 2013, , 187-213.		0
479	Cobalt-catalyzed regiodivergent synthesis of 5- and 6-substituted 1,3-dihydroisobenzofurans via cycloaddition of diynes and alkynes. Molecular Catalysis, 2021, 516, 111989.	2.0	Ο