Ashraf Virmani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7763295/publications.pdf Version: 2024-02-01

ASHDAF VIDMANI

#	Article	IF	CITATIONS
1	The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. International Journal of Molecular Sciences, 2022, 23, 2717.	4.1	62
2	Carnitines as Mitochondrial Modulators of Oocyte and Embryo Bioenergetics. Antioxidants, 2022, 11, 745.	5.1	9
3	Baseline levels of seminal reactive oxygen species predict improvements in sperm function following antioxidant therapy in men with infertility. Clinical Endocrinology, 2021, 94, 102-110.	2.4	13
4	Mechanistic perspectives on differential mitochondrial-based neuroprotective effects of several carnitine forms in Alzheimer's disease in vitro model. Archives of Toxicology, 2021, 95, 2769-2784.	4.2	13
5	Neuroendocrine Effects of Carnitines on Reproductive Impairments. International Journal of Molecular Sciences, 2021, 22, 10781.	4.1	8
6	Regulatory Functions of L-Carnitine, Acetyl, and Propionyl L-Carnitine in a PCOS Mouse Model: Focus on Antioxidant/Antiglycative Molecular Pathways in the Ovarian Microenvironment. Antioxidants, 2020, 9, 867.	5.1	26
7	Body mass index and age correlate with antioxidant supplementation effects on sperm quality: Post hoc analyses from a doubleâ€blind placeboâ€controlled trial. Andrologia, 2020, 52, e13523.	2.1	14
8	Doubleâ€blind, randomised, placeboâ€controlled trial on the effect of Lâ€carnitine and Lâ€acetylcarnitine on sperm parameters in men with idiopathic oligoasthenozoospermia. Andrologia, 2019, 51, e13267.	2.1	58
9	Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: A double-blind placebo-controlled study. Andrologia, 2018, 50, e12927.	2.1	87
10	Carnitines and essential nutrients ameliorate sperm vitality and DNA fragmentation index which also predict improvement in progressive sperm motility. Fertility and Sterility, 2018, 110, e297.	1.0	1
11	Effect of antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: A double blind place controlled (DBPC) study. European Urology Supplements, 2017, 16, e782.	0.1	1
12	Varicocele and oligoasthenoteratozoospermia: evaluation of antioxidant supplementation effect on pregnancy rate and sperm quality. Fertility and Sterility, 2017, 108, e133.	1.0	3
13	DBPC study showed significant correlation of DNA fragmetation index (DFI) and seminal carnitine with progressive sperm motility in oligospermic men treated with metabolic andessential nutrients. Fertility and Sterility, 2017, 108, e307-e308.	1.0	3
14	Effect of antioxidant and metabolic nutrients on oocytes development in IVF model in mice. Fertility and Sterility, 2016, 106, e120.	1.0	0
15	Acetyl-l-carnitine increases mitochondrial protein acetylation in the aged rat heart. Mechanisms of Ageing and Development, 2015, 145, 39-50.	4.6	22
16	Histopathological and electrophysiological indices of rotenone-evoked dopaminergic toxicity: Neuroprotective effects of acetyl-l-carnitine. Neuroscience Letters, 2015, 606, 53-59.	2.1	18
17	The Carnitine Palmitoyl Transferase (CPT) System and Possible Relevance for Neuropsychiatric and Neurological Conditions. Molecular Neurobiology, 2015, 52, 826-836.	4.0	46
18	Food, Nutrigenomics, and Neurodegeneration—Neuroprotection by What You Eat!. Molecular Neurobiology, 2013, 48, 353-362.	4.0	117

ASHRAF VIRMANI

#	Article	IF	CITATIONS
19	Carnitines slow down tumor development of colon cancer in the DMHâ€chemical carcinogenesis mouse model. Journal of Cellular Biochemistry, 2013, 114, 1665-1673.	2.6	16
20	Effect of propionylcarnitine on mitochondrial energy metabolism in elderly rat heart. FASEB Journal, 2012, 26, 785.2.	0.5	0
21	On the in vivo early toxic properties of Aβ25–35 peptide in the rat hippocampus: Involvement of the Receptor-for-Advanced Clycation-End-Products and changes in gene expression. Neurotoxicology and Teratology, 2011, 33, 288-296.	2.4	20
22	Acetyl-L-Carnitine Modulates TP53 and IL10 Gene Expression Induced by 3-NPA Evoked Toxicity in PC12 Cells. Current Neuropharmacology, 2011, 9, 195-199.	2.9	12
23	Neuroprotective strategies in drug abuseâ€evoked encephalopathy. Annals of the New York Academy of Sciences, 2010, 1199, 52-68.	3.8	17
24	Assessment of 3-nitropropionic acid-evoked peripheral neuropathy in rats: Neuroprotective effects of acetyl-l-carnitine and resveratrol. Neuroscience Letters, 2010, 480, 117-121.	2.1	20
25	Effect of propionyl- <scp>l</scp> -carnitine, <scp>l</scp> -arginine and nicotinic acid on the efficacy of vardenafil in the treatment of erectile dysfunction in diabetes. Current Medical Research and Opinion, 2009, 25, 2223-2228.	1.9	26
26	Propionil-L-carnitina en la arteriopatÃa obstructiva periférica en estadio II de la clasificación de Leriche-Fontaine. Annals of Vascular Surgery, 2008, 22, 602-608.	0.0	0
27	Propionyl-L-Carnitine et artériopathie des membres inférieurs au stade II de Leriche et Fontaine. Annales De Chirurgie Vasculaire, 2008, 22, 599-605.	0.0	0
28	Propionyl-l-Carnitine in Leriche-Fontaine Stage II Peripheral Arterial Obstructive Disease. Annals of Vascular Surgery, 2008, 22, 552-558.	0.9	14
29	l-Carnitine protects neurons from 1-methyl-4-phenylpyridinium-induced neuronal apoptosis in rat forebrain culture. Neuroscience, 2007, 144, 46-55.	2.3	52
30	Metabolic Syndrome in Drug Abuse. Annals of the New York Academy of Sciences, 2007, 1122, 50-68.	3.8	29
31	Valproate and Acetylâ€ <scp>l</scp> â€carnitine Prevent Methamphetamineâ€Induced Behavioral Sensitization in Mice. Annals of the New York Academy of Sciences, 2007, 1122, 260-275.	3.8	9
32	Co-regulation of dopamine D1 receptor and uncoupling protein-2 expression in 3-nitropropionic acid-induced neurotoxicity: Neuroprotective role of l-carnitine. Neuroscience Letters, 2006, 410, 62-65.	2.1	10
33	Effects of L-Carnitine Pretreatment in Methamphetamine and 3-Nitropropionic Acid-Induced Neurotoxicity. Annals of the New York Academy of Sciences, 2006, 1074, 74-83.	3.8	6
34	Links between Nutrition, Drug Abuse, and the Metabolic Syndrome. Annals of the New York Academy of Sciences, 2006, 1074, 303-314.	3.8	30
35	<scp>l</scp> arnitine and Neuroprotection in the Animal Model of Mitochondrial Dysfunction. Annals of the New York Academy of Sciences, 2005, 1053, 174-182.	3.8	7
36	Effects of Metabolic Modifiers Such as Carnitines, Coenzyme Q10, and PUFAs against Different Forms of Neurotoxic Insults: Metabolic Inhibitors, MPTP, and Methamphetamine. Annals of the New York Academy of Sciences, 2005, 1053, 183-191.	3.8	20

ASHRAF VIRMANI

#	Article	IF	CITATIONS
37	Identification of Rat Hippocampal mRNAs Altered by the Mitochondrial Toxicant, 3-NPA. Annals of the New York Academy of Sciences, 2005, 1053, 162-173.	3.8	12
38	l-Carnitine and Neuroprotection in the Animal Model of Mitochondrial Dysfunction. Annals of the New York Academy of Sciences, 2005, 1053, 174-182.	3.8	25
39	Effects of Metabolic Modifiers Such as Carnitines, Coenzyme Q10, and PUFAs against Different Forms of Neurotoxic Insults: Metabolic Inhibitors, MPTP, and Methamphetamine. Annals of the New York Academy of Sciences, 2005, 1053, 183-191.	3.8	51
40	Role of Mitochondrial Dysfunction in Neurotoxicity of MPP:+: Partial Protection of PC12 Cells by Acetyl-I-Carnitine. Annals of the New York Academy of Sciences, 2004, 1025, 267-273.	3.8	41
41	Neuroprotective effect of l-carnitine in the 3-nitropropionic acid (3-NPA)-evoked neurotoxicity in rats. Neuroscience Letters, 2004, 367, 264-267.	2.1	31
42	Role of carnitine esters in brain neuropathology. Molecular Aspects of Medicine, 2004, 25, 533-549.	6.4	147
43	Possible Mechanism for the Neuroprotective Effects of lâ€Carnitine on Methamphetamineâ€Evoked Neurotoxicity. Annals of the New York Academy of Sciences, 2003, 993, 197-207.	3.8	57
44	The Mitochondriotropic Effects of L-carnitine and its Esters in the Central Nervous System. Current Medicinal Chemistry - Central Nervous System Agents, 2003, 3, 275-282.	0.5	16
45	The Protective Role of l arnitine against Neurotoxicity Evoked by Drug of Abuse, Methamphetamine, Could Be Related to Mitochondrial Dysfunction. Annals of the New York Academy of Sciences, 2002, 965, 225-232.	3.8	62
46	Evidence for the Involvement of Carnitineâ€Dependent Longâ€Chain Acyltransferases in Neuronal Triglyceride and Phospholipid Fatty Acid Turnover. Journal of Neurochemistry, 1994, 62, 1530-1538.	3.9	51
47	Levels of reactive oxygen species (ROS) in the seminal plasma predicts the effectiveness of L-carnitine to improve sperm function in men with infertility. Endocrine Abstracts, 0, , .	0.0	2