Jennifer S Hawkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7763243/publications.pdf

Version: 2024-02-01

20 papers

2,028 citations

687363 13 h-index 752698 20 g-index

22 all docs 22 docs citations

times ranked

22

2883 citing authors

#	Article	IF	CITATIONS
1	Integration of high-density genetic mapping with transcriptome analysis uncovers numerous agronomic QTL and reveals candidate genes for the control of tillering in sorghum. G3: Genes, Genomes, Genetics, 2021, 11 , .	1.8	4
2	Differences in microbial community response to nitrogen fertilization result in unique enzyme shifts between arbuscular and ectomycorrhizalâ€dominated soils. Global Change Biology, 2021, 27, 2049-2060.	9.5	24
3	QTL mapping in an interspecific sorghum population uncovers candidate regulators of salinity tolerance. Plant Stress, 2021, 2, 100024.	5.5	12
4	Evolutionary Dynamics of Transposable Elements Following a Shared Polyploidization Event in the Tribe Andropogoneae. G3: Genes, Genomes, Genetics, 2020, 10, 4387-4398.	1.8	9
5	Phenotypic and physiological responses to salt exposure in <i>Sorghum</i> reveal diversity among domesticated landraces. American Journal of Botany, 2020, 107, 983-992.	1.7	7
6	The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nature Communications, 2019, 10, 3810.	12.8	116
7	Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under longâ€ŧerm N fertilization. Global Change Biology, 2018, 24, 2721-2734.	9.5	126
8	Methods for accurate quantification of LTR-retrotransposon copy number using short-read sequence data: a case study in Sorghum. Molecular Genetics and Genomics, 2016, 291, 1871-1883.	2.1	5
9	Phylogenetic reconstruction using four low-copy nuclear loci strongly supports a polyphyletic origin of the genus <i>Sorghum</i> . Annals of Botany, 2015, 116, 291-299.	2.9	23
10	Variation in allelic expression associated with a recombination hotspot in <i>Zea mays</i> Plant Journal, 2014, 79, 375-384.	5.7	13
11	Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection. Plant Molecular Biology, 2012, 80, 443-460.	3.9	46
12	Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012, 30, 555-561.	17.5	864
13	The history and disposition of transposable elements in polyploid Gossypium. Genome, 2010, 53, 599-607.	2.0	43
14	Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17811-17816.	7.1	164
15	Repeated big bangs and the expanding universe: Directionality in plant genome size evolution. Plant Science, 2008, 174, 557-562.	3.6	71
16	Phylogenetic determination of the pace of transposable element proliferation in plants: <i>copia</i> and LINE-like elements in <i>Gossypium</i> Gossypium	2.0	52
17	Phylogenetic, morphological, and chemotaxonomic incongruence in the North American endemic genus <i>Echinacea</i> . American Journal of Botany, 2008, 95, 756-765.	1.7	34
18	Genetic Diversity in <i>Hypericum</i> and AFLP Markers for Species-Specific Identification of <i>H. perforatum</i> L Planta Medica, 2007, 73, 1614-1621.	1.3	30

#	Article	IF	CITATIONS
19	Tobacco genomes quickly go up in smoke. New Phytologist, 2007, 175, 599-602.	7.3	5
20	Differential lineage-specific amplification of transposable elements is responsible for genome size variation in <i>Gossypium</i> . Genome Research, 2006, 16, 1252-1261.	5.5	378