Yusuke Tahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7763204/publications.pdf

Version: 2024-02-01

48

all docs

46 881 16 papers citations h-index

48 48 732
docs citations times ranked citing authors

29

g-index

#	Article	IF	CITATIONS
1	Hetero-core structured fiber optic chemical sensor based on surface plasmon resonance using Au/lipid films. Optics Communications, 2022, 524, 128751.	2.1	4
2	Bitterness compounds in coffee brew measured by analytical instruments and taste sensing system. Food Chemistry, 2021, 342, 128228.	8.2	23
3	Quantification of Pharmaceutical Bitterness Using a Membrane Electrode Based on a Hydrophobic Tetrakis [3,5-Bis (trifluoromethyl) phenyl] Borate. Chemosensors, 2021, 9, 28.	3.6	5
4	Taste Sensor: Electronic Tongue with Lipid Membranes. Analytical Sciences, 2020, 36, 147-159.	1.6	56
5	Metabolome Analysis Identified Okaramines in the Soybean Rhizosphere as a Legacy of Hairy Vetch. Frontiers in Genetics, 2020, 11, 114.	2.3	13
6	Development of Taste Sensor to Detect Non-Charged Bitter Substances. Sensors, 2020, 20, 3455.	3.8	22
7	Reusability Enhancement of Taste Sensor Using Lipid Polymer Membranes by Surfactant Cleaning Treatment. IEEE Sensors Journal, 2020, 20, 4579-4586.	4.7	6
8	A Quantitative Method for Acesulfame K Using the Taste Sensor. Sensors, 2020, 20, 400.	3.8	8
9	Quantification of bitterness of coffee in the presence of high-potency sweeteners using taste sensors. Sensors and Actuators B: Chemical, 2020, 309, 127784.	7.8	26
10	Surfactant cleaning of lipid polymer membranes of bitterness sensor. , 2019, , .		0
11	Development of a Sensor with a Lipid/Polymer Membrane Comprising Na+ Ionophores to Evaluate the Saltiness Enhancement Effect. Sensors, 2019, 19, 5251.	3.8	10
12	Prediction of Glycogen and Moisture Contents in Japanese Wagyu Beef by Fourier Transform Near-infrared Spectroscopy for Quality Evaluation. Sensors and Materials, 2019, 31, 2381.	0.5	1
13	Objective and Subjective Evaluation of Flavor caused by Filter for Drink Extraction. IEEJ Transactions on Sensors and Micromachines, 2019, 139, 385-392.	0.1	O
14	Highly Selective Rational Design of Peptide-Based Surface Plasmon Resonance Sensor for Direct Determination of 2,4,6-trinitrotoluene (TNT) Explosive. Sensors and Actuators B: Chemical, 2018, 264, 279-284.	7.8	41
14 15	Determination of 2,4,6-trinitrotoluene (TNT) Explosive. Sensors and Actuators B: Chemical, 2018, 264,	7.8	1
	Determination of 2,4,6-trinitrotoluene (TNT) Explosive. Sensors and Actuators B: Chemical, 2018, 264, 279-284.	7.8	
15	Determination of 2,4,6-trinitrotoluene (TNT) Explosive. Sensors and Actuators B: Chemical, 2018, 264, 279-284. Development of sweetness sensor for high-potency sweeteners using lipid polymer membrane., 2017,,.		1

#	Article	IF	Citations
19	Beer Analysis Using an Electronic Tongue. , 2016, , 161-170.		4
20	Taste sensor using strongly hydrophobic membranes to measure hydrophobic substances. , 2016, , .		0
21	Quantitative prediction of bitterness masking effect of high-potency sweeteners using taste sensor. Sensors and Actuators B: Chemical, 2016, 235, 11-17.	7.8	31
22	Evaluating the Reduced Hydrophobic Taste Sensor Response of Dipeptides by Theasinensin A by Using NMR and Quantum Mechanical Analyses. PLoS ONE, 2016, 11, e0157315.	2.5	3
23	Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a Preconditioning Process. Sensors, 2015, 15, 22439-22450.	3.8	16
24	Study of the Relationship between Taste Sensor Response and the Amount of Epigallocatechin Gallate Adsorbed Onto a Lipid-Polymer Membrane. Sensors, 2015, 15, 6241-6249.	3.8	14
25	Taste Sensor as a Science Teaching Material. IEEJ Transactions on Sensors and Micromachines, 2015, 135, 65-70.	0.1	0
26	Development of Indirect Competitive Immuno-Assay Method Using SPR Detection for Rapid and Highly Sensitive Measurement of Salivary Cortisol Levels. Frontiers in Bioengineering and Biotechnology, 2014, 2, 15.	4.1	16
27	Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener. Sensors, 2014, 14, 7359-7373.	3.8	25
28	Relationship between the Amount of Bitter Substances Adsorbed onto Lipid/Polymer Membrane and the Electric Response of Taste Sensors. Sensors, 2014, 14, 16274-16286.	3.8	45
29	Development of sweetness sensor with selectivity to negatively charged high-potency sweeteners. Sensors and Actuators B: Chemical, 2014, 201, 329-335.	7.8	25
30	Examination of Amount of Astringent Substances Adsorbed Onto Lipid/Polymer Membrane Used in Taste Sensor. Sensor Letters, 2014, 12, 1172-1176.	0.4	17
31	Development of Taste Sensor as a Teaching Material Comprehending Science Subjects in High School. IEEJ Transactions on Fundamentals and Materials, 2014, 134, 472-477.	0.2	1
32	Approach to Science Education of High School Students by a Delivery Science Class Applying Taste Sensor. Journal of Jsee, 2014, 62, 5_71-5_75.	0.0	0
33	Quantification of tastes of amino acids using taste sensors. Sensors and Actuators B: Chemical, 2013, 179, 276-281.	7.8	56
34	Development of a Portable Taste Sensor with a Lipid/Polymer Membrane. Sensors, 2013, 13, 1076-1084.	3.8	29
35	Electronic Tongues–A Review. IEEE Sensors Journal, 2013, 13, 3001-3011.	4.7	268
36	Detection of Surfactants Using Surface Plasmon Resonance Sensor for Screening of Pesticide Residue. IEEJ Transactions on Sensors and Micromachines, 2013, 133, 14-19.	0.1	1

#	Article	IF	CITATIONS
37	Portable Taste Sensor., 2013,, 423-433.		O
38	Development of a multichannel taste sensor chip for a portable taste sensor. , 2012, , .		2
39	Development and Evaluation of a Miniaturized Taste Sensor Chip. Sensors, 2011, 11, 9878-9886.	3.8	28
40	Point-of-use measurement of salivary cortisol levels. , 2009, , .		7
41	Evaluation of environmental and physiological factors of a whole ceiling-type air conditioner using a salivary biomarker. Building and Environment, 2009, 44, 1156-1161.	6.9	8
42	Comparison of cathepsin L activity in cheek and forearm stratum corneum in young female adults. Skin Research and Technology, 2009, 15, 370-375.	1.6	11
43	Mental health evaluation using chemical sensor as human-machine interface. , 2009, , .		O
44	Cathepsin L Activity Analysis Method for Evaluation of Skin Conditions of Human. Bunseki Kagaku, 2009, 58, 15-19.	0.2	3
45	Immuno-chromatographic Test-strip for Skin Cathepsin L Analysis. ECS Transactions, 2008, 16, 67-73.	0.5	1
46	Secretory and continuous expression of Aspergillus niger glucose oxidase gene in Pichia pastoris. Protein Expression and Purification, 2007, 55, 273-278.	1.3	24