
Srikumar Chellappan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7763141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HDAC11 activity contributes to MEK inhibitor escape in uveal melanoma. Cancer Gene Therapy, 2022, 29, 1840-1846.	4.6	3
2	Inhibitors Targeting CDK9 Show High Efficacy against Osimertinib and AMG510 Resistant Lung Adenocarcinoma Cells. Cancers, 2021, 13, 3906.	3.7	8
3	Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Scientific Reports, 2020, 10, 4722.	3.3	63
4	HDAC Inhibition Enhances the <i>In Vivo</i> Efficacy of MEK Inhibitor Therapy in Uveal Melanoma. Clinical Cancer Research, 2019, 25, 5686-5701.	7.0	75
5	Fendiline Enhances the Cytotoxic Effects of Therapeutic Agents on PDAC Cells by Inhibiting Tumor-Promoting Signaling Events: A Potential Strategy to Combat PDAC. International Journal of Molecular Sciences, 2019, 20, 2423.	4.1	7
6	Nicotine-Mediated Regulation of Nicotinic Acetylcholine Receptors in Non-Small Cell Lung Adenocarcinoma by E2F1 and STAT1 Transcription Factors. PLoS ONE, 2016, 11, e0156451.	2.5	36
7	The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression. Cancers, 2015, 7, 1447-1471.	3.7	38
8	Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis. Nature Communications, 2015, 6, 10072.	12.8	79
9	β-Arrestin-1 Mediates Nicotine-Induced Metastasis through E2F1 Target Genes That Modulate Epithelial–Mesenchymal Transition. Cancer Research, 2015, 75, 1009-1020.	0.9	69
10	YAP1 Regulates OCT4 Activity and SOX2 Expression to Facilitate Self-Renewal and Vascular Mimicry of Stem-Like Cells. Stem Cells, 2015, 33, 1705-1718.	3.2	144
11	Gli1-Mediated Regulation of Sox2 Facilitates Self-Renewal of Stem-Like Cells and Confers Resistance to EGFR Inhibitors in Non–Small Cell Lung Cancer. Neoplasia, 2015, 17, 538-551.	5.3	104
12	Fendiline inhibits proliferation and invasion of pancreatic cancer cells by interfering with ADAM10 activation and β-catenin signaling. Oncotarget, 2015, 6, 35931-35948.	1.8	37
13	Lung cancer stem cells: Molecular features and therapeutic targets. Molecular Aspects of Medicine, 2014, 39, 50-60.	6.4	41
14	Nicotine-mediated invasion and migration of non-small cell lung carcinoma cells by modulating STMN3 and GSPT1 genes in an ID1-dependent manner. Molecular Cancer, 2014, 13, 173.	19.2	35
15	Mammalian Lysine Histone Demethylase KDM2A Regulates E2F1-Mediated Gene Transcription in Breast Cancer Cells. PLoS ONE, 2014, 9, e100888.	2.5	34
16	?7 Nicotinic Acetylcholine Receptor Subunit in Angiogenesis and Epithelial to Mesenchymal Transition. Current Drug Targets, 2012, 13, 671-679.	2.1	42
17	Nicotinic Acetylcholine Receptor Signaling in Tumor Growth and Metastasis. Journal of Oncology, 2011, 2011, 1-11.	1.3	111
18	ID1 Facilitates the Growth and Metastasis of Non-Small Cell Lung Cancer in Response to Nicotinic Acetylcholine Receptor and Epidermal Growth Factor Receptor Signaling. Molecular and Cellular Biology, 2011, 31, 3052-3067.	2.3	58

#	Article	IF	CITATIONS
19	Regulation of Vascular Endothelial Growth Factor Receptors by Rb and E2F1: Role of Acetylation. Cancer Research, 2010, 70, 4931-4940.	0.9	61
20	Small molecule regulators of Rb–E2F pathway as modulators of transcription. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 788-794.	1.9	41
21	Prohibitin physically interacts with MCM proteins and inhibits mammalian DNA replication. Cell Cycle, 2009, 8, 1621-1629.	2.6	38
22	Nicotine induces cell proliferation, invasion and epithelialâ€mesenchymal transition in a variety of human cancer cell lines. International Journal of Cancer, 2009, 124, 36-45.	5.1	319
23	Nicotine Promotes Tumor Growth and Metastasis in Mouse Models of Lung Cancer. PLoS ONE, 2009, 4, e7524.	2.5	168
24	A Small Molecule Disruptor of Rb/Raf-1 Interaction Inhibits Cell Proliferation, Angiogenesis, and Growth of Human Tumor Xenografts in Nude Mice. Cancer Research, 2008, 68, 3810-3818.	0.9	46
25	Disrupting the Rb-Raf-1 Interaction: A Potential Therapeutic Target for Cancer. Drug News and Perspectives, 2008, 21, 331.	1.5	21
26	Prohibitin Facilitates Cellular Senescence by Recruiting Specific Corepressors To Inhibit E2F Target Genes. Molecular and Cellular Biology, 2006, 26, 4161-4171.	2.3	81
27	Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6332-6337.	7.1	273
28	Rb Function in the Apoptosis and Senescence of Non-Neuronal and Neuronal Cells: Role in Oncogenesis. Current Molecular Medicine, 2006, 6, 719-729.	1.3	16
29	The ABCs of Targeting Raf: Novel Approaches to Cancer Therapy. Current Cancer Therapy Reviews, 2006, 2, 305-314.	0.3	4
30	Nicotine induces cell proliferation by Â-arrestin-mediated activation of Src and Rb-Raf-1 pathways. Journal of Clinical Investigation, 2006, 116, 2208-2217.	8.2	274
31	Rb Function in the Apoptosis and Senescence of Non-Neuronal and Neuronal Cells: Role in Oncogenesis. Current Molecular Medicine, 2006, 6, 719-729.	1.3	24
32	Direct Binding of Apoptosis Signal-regulating Kinase 1 to Retinoblastoma Protein. Journal of Biological Chemistry, 2004, 279, 38762-38769.	3.4	36
33	Apoptotic and mitogenic stimuli inactivate Rb by differential utilization of p38 and cyclin-dependent kinases. Oncogene, 2003, 22, 5986-5994.	5.9	40
34	Differential regulation of Rb family proteins and prohibitin during camptothecin-induced apoptosis. Oncogene, 2002, 21, 4539-4548.	5.9	98
35	Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function. Oncogene, 1999, 18, 3501-3510.	5.9	217
36	Rb and Prohibitin Target Distinct Regions of E2F1 for Repression and Respond to Different Upstream Signals. Molecular and Cellular Biology, 1999, 19, 7447-7460.	2.3	153