Jonas Contiero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7762827/publications.pdf

Version: 2024-02-01

172386 123376 3,976 94 29 61 citations h-index g-index papers 97 97 97 4323 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lignin surface area influenced by biomass heterogeneity and pretreatment process. Biomass Conversion and Biorefinery, 2024, 14, 477-488.	2.9	1
2	Enzymatic Production of Xylooligosaccharides from Xylan Solubilized from Food and Agroindustrial Waste. Bioenergy Research, 2022, 15, 1195-1203.	2.2	10
3	Rhamnolipids as Green Stabilizers of nZVI and Application in the Removal of Nitrate From Simulated Groundwater. Frontiers in Bioengineering and Biotechnology, 2022, 10, 794460.	2.0	6
4	Sieving process selects sugarcane bagasse with lower recalcitrance to xylan solubilization. Journal of Chemical Technology and Biotechnology, 2021, 96, 327-334.	1.6	23
5	Rhamnolipid from Pseudomonas aeruginosa can improve the removal of Direct Orange 2GL in textile dye industry effluents. Journal of Molecular Liquids, 2021, 321, 114753.	2.3	13
6	Pseudo-Lignin Content Decreased with Hemicellulose and Lignin Removal, Improving Cellulose Accessibility, and Enzymatic Digestibility. Bioenergy Research, 2021, 14, 106-121.	2.2	25
7	Production of Rhamnolipids from Soybean Soapstock: Characterization and Comparation with Synthetics Surfactants. Waste and Biomass Valorization, 2021, 12, 2013-2023.	1.8	5
8	Biochars from Spirulina as an alternative material in the purification of lactic acid from a fermentation broth. Current Research in Green and Sustainable Chemistry, 2021, 4, 100084.	2.9	6
9	Polyhydroxyalkanoates: naturally occurring microbial polymers suitable for nanotechnology applications., 2021,, 3-20.		4
10	Rhamnolipid-Based Liposomes as Promising Nano-Carriers for Enhancing the Antibacterial Activity of Peptides Derived from Bacterial Toxin-Antitoxin Systems. International Journal of Nanomedicine, 2021, Volume 16, 925-939.	3.3	13
11	Chemical composition determines the bioenergy potential of food waste from pre- and post-production. Journal of Material Cycles and Waste Management, 2021, 23, 1365-1373.	1.6	10
12	Production of L $(+)$ Lactic Acid by Lactobacillus casei Ke 11 : Fed Batch Fermentation Strategies. Fermentation, 2021, 7, 151.	1.4	12
13	Rhamnolipids and essential oils in the control of mosquito-borne tropical diseases. Applied Microbiology and Biotechnology, 2021, 105, 7505-7515.	1.7	O
14	Silver nanoparticles stabilized by ramnolipids: Effect of pH. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111883.	2.5	20
15	Production Of 2-O-Alpha-D-Glucopyranosyl-L-Ascorbic Acid by Transglycosylation Using Dextransucrase From Leuconostoc mesenteroides. Current Research in Chemistry, 2021, 13, 1-6.	0.5	O
16	Active-electrode biosensor of SnO ₂ nanowire for cyclodextrin detection from microbial enzyme. Nanotechnology, 2020, 31, 165501.	1.3	5
17	A New Possibility for Fermentation Monitoring by Electrical Driven Sensing of Ultraviolet Light and Glucose. Biosensors, 2020, 10, 97.	2.3	2
18	Efficient Conversion of Agroindustrial Waste into D(-) Lactic Acid by <i>Lactobacillus delbrueckii</i> Using Fed-Batch Fermentation. BioMed Research International, 2020, 2020, 1-13.	0.9	25

#	Article	IF	CITATIONS
19	Polyhydroxyalkanoate Synthesis by Burkholderia glumae into a Sustainable Sugarcane Biorefinery Concept. Frontiers in Bioengineering and Biotechnology, 2020, 8, 631284.	2.0	12
20	Evaluation of a new method for (L+) lactic acid purification, using ethyl ether. Biocatalysis and Agricultural Biotechnology, 2020, 26, 101653.	1.5	5
21	Biomass Fractionation Based on Enzymatic Hydrolysis for Biorefinery Systems. Clean Energy Production Technologies, 2020, , 217-254.	0.3	3
22	Burkholderia glumae MA13: A newly isolated bacterial strain suitable for polyhydroxyalkanoate production from crude glycerol. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101268.	1.5	17
23	Technological challenges and advances: from lactic acid to polylactate and copolymers. , 2019, , $117\text{-}153$.		0
24	High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain. 3 Biotech, 2018, 8, 213.	1.1	10
25	Experimental design for optimization of D-lactic acid production using a UV-light selected strain. Journal of Applied Biotechnology & Bioengineering, 2018, 5, .	0.0	1
26	Poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) production from biodiesel byâ€product and propionic acid by mutant strains of <i>Pandoraea</i> sp Biotechnology Progress, 2017, 33, 1077-1084.	1.3	31
27	Biodiesel byproduct bioconversion to rhamnolipids: Upstream aspects. Heliyon, 2017, 3, e00337.	1.4	8
28	Polyhydroxyalkanoate production from crude glycerol by newly isolated Pandoraea sp Journal of King Saud University - Science, 2017, 29, 166-173.	1.6	51
29	Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases. PLoS ONE, 2017, 12, e0187125.	1.1	34
30	Environmentally Friendly Production of D(\hat{a}°) Lactic Acid by (i) Sporolactobacillus nakayamae (i): Investigation of Fermentation Parameters and Fed-Batch Strategies. International Journal of Microbiology, 2017, 2017, 1-11.	0.9	14
31	Anaerobic and micro-aerobic 1,3-propanediol production by engineered Escherichia coli with dha genes from Klebsiella pneumoniae GLC29. African Journal of Biotechnology, 2017, 16, 1800-1809.	0.3	1
32	Microbial Glycosidases for Nondigestible Oligosaccharides Production., 2017,,.		2
33	Experimental Design For 1,3-Propanediol Biosynthesis by K. Pneumoniae GLC29 Using Glycerol. Journal of Applied Biotechnology & Bioengineering, 2017, 4, .	0.0	1
34	Reutilization of Microbial Cells for Production of Cyclodextrin Glycosyltransferase Enzyme. Research Journal of Microbiology, 2017, 12, 229-235.	0.2	4
35	Agave syrup as a substrate for inulinase production by <i>Kluyveromyces marxianus</i> NRRL Y-7571. Acta Scientiarum - Biological Sciences, 2016, 38, 283.	0.3	0
36	High D(\hat{a} °) lactic acid levels production by Sporolactobacillus nakayamae and an efficient purification. Annals of Microbiology, 2016, 66, 1367-1376.	1.1	9

#	Article	IF	CITATIONS
37	l-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste. Brazilian Journal of Microbiology, 2016, 47, 640-646.	0.8	65
38	Sub-micrometric and nanometric solid phases obtained through reductive decomposition reaction of \hat{l}^2 -cyclodextrin / \hat{l}^2 -siklodekstrin indirgeyici bozunma reaksiyonu yoluyla elde edilen alt mikrometrik ve nanometrik katÄ \pm fazlar. Turkish Journal of Biochemistry, 2015, 40, .	0.3	0
39	Rhamnolipids: solution against Aedes aegypti?. Frontiers in Microbiology, 2015, 6, 88.	1.5	29
40	Rhamnolipids know-how: Looking for strategies for its industrial dissemination. Biotechnology Advances, 2015, 33, 1715-1726.	6.0	50
41	Production and productivity of 1,3-propanediol from glycerol by Klebsiella pneumoniae GLC29. Catalysis Today, 2015, 257, 259-266.	2.2	41
42	Yacon Flour and Corn Steep Liquor as Substrate for Inulinase and Biomass Production by Kluyveromyces Marxianus NRRL Y-7571. Journal of Advances in Biotechnology, 2015, 4, 414-423.	0.1	2
43	1,3-Propanediol: production, applications and biotechnological potential. Quimica Nova, 2014, 37, .	0.3	9
44	Transport of amino acids from milk whey by Caco-2 cell monolayer after hydrolytic action of gastrointestinal enzymes. Food Research International, 2014, 63, 62-70.	2.9	13
45	Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization. Tenside, Surfactants, Detergents, 2014, 51, 397-405.	0.5	10
46	Isolation and characterization of bacterial producers of optically pure D(-) and L(+) lactic acid. African Journal of Microbiology Research, 2013, 7, 2618-2628.	0.4	3
47	Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry, 2012, 47, 1207-1219.	1.8	254
48	Structural characterization of a new dextran with a low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase. Carbohydrate Polymers, 2012, 88, 1440-1444.	5.1	98
49	Bacillus lehensis—an alkali-tolerant bacterium isolated from cassava starch wastewater: optimization of parameters for cyclodextrin glycosyltransferase production. Annals of Microbiology, 2012, 62, 329-337.	1.1	19
50	Dextran: effect of process parameters on production, purification and molecular weight and recent applications. DiÃilogos & Ciência, 2012, 2012, 171-186.	0.1	19
51	Lactic acid production by new Lactobacillus plantarum LMISM6 grown in molasses: optimization of medium composition. Brazilian Journal of Chemical Engineering, 2011, 28, 27-36.	0.7	47
52	d(â^')-Lactic Acid Production by Leuconostoc mesenteroides B512 Using Different Carbon and Nitrogen Sources. Applied Biochemistry and Biotechnology, 2011, 164, 1160-1171.	1.4	36
53	Rhamnolipid emulsifying activity and emulsion stability: pH rules. Colloids and Surfaces B: Biointerfaces, 2011, 85, 301-305.	2.5	103
54	Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochemistry, 2011, 46, 621-630.	1.8	100

#	Article	IF	Citations
55	Structure and Applications of a Rhamnolipid Surfactant Produced in Soybean Oil Waste. Applied Biochemistry and Biotechnology, 2010, 160, 2066-2074.	1.4	116
56	Improvement of L($+$)-lactic acid production from cassava wastewater by Lactobacillus rhamnosus B 103. Journal of the Science of Food and Agriculture, 2010, 90, n/a-n/a.	1.7	11
57	Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Process Biochemistry, 2010, 45, 1511-1516.	1.8	129
58	Medium composition and optimization of Lactic acid production by Lactobacillus plantarum Lmism-6 grown in molasses. Journal of Biotechnology, 2010, 150, 511-511.	1.9	1
59	Effects of culture conditions on the production of inulinase by Kluyveromyces marxianus. Brazilian Archives of Biology and Technology, 2010, 53, 701-707.	0.5	11
60	L(+) Lactic Acid Production by New Lactobacillus Rhamnosus B 103. Journal of Microbial & Biochemical Technology, 2010, 02, 064-069.	0.2	13
61	Response surface optimization of D(-)-lactic acid production by Lactobacillus SMI8 using corn steep liquor and yeast autolysate as an alternative nitrogen source. African Journal of Biotechnology, 2009, 8, 5842-5846.	0.3	40
62	Investigation about the efficiency of the bioaugmentation technique when applied to diesel oil contaminated soils. Brazilian Archives of Biology and Technology, 2009, 52, 1297-1312.	0.5	10
63	Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 2009, 27, 30-39.	6.0	889
64	Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1063-1072.	1.4	72
65	Wettability of Aqueous Rhamnolipids Solutions Produced by <i>Pseudomonas aeruginosa</i> LBI. Journal of Surfactants and Detergents, 2009, 12, 125-130.	1.0	13
66	Surfactin reduces the adhesion of food-borne pathogenic bacteria to solid surfaces. Letters in Applied Microbiology, 2009, 49, 241-247.	1.0	78
67	Aerobic biodegradation of butanol and gasoline blends. Biomass and Bioenergy, 2009, 33, 1175-1181.	2.9	23
68	Cyclodextrin Glycosyltransferase Production by the Bacillus sp., Subgroup alcalophilus using a Central Composite Design. Research Journal of Microbiology, 2009, 4, 450-459.	0.2	9
69	Keratinolytic activity of <i>Streptomyces</i> sp isolated of poultry processing plant., 2009,,.		0
70	Sucrose hydrolysis by gelatin-immobilized inulinase from Kluyveromyces marxianus var. bulgaricus. Food Chemistry, 2008, 111, 691-695.	4.2	34
71	Biosurfactant synthesis byPseudomonas aeruginosaLBI isolated from a hydrocarbon-contaminated site. Journal of Applied Microbiology, 2008, 105, 1484-1490.	1.4	52
72	Effect of Conditioning on the Production of Inulinase by Kluyveromyces marxianus var. bulgaricus through Fed-Batch Fermentation. International Journal of Food Engineering, 2008, 4, .	0.7	0

#	Article	IF	CITATIONS
73	Cyclodextrin glycosyltransferase production by new Bacillus sp. strains isolated from brazilian soil. Brazilian Journal of Microbiology, 2008, 39, 682-688.	0.8	11
74	Biodegradability of commercial and weathered diesel oils. Brazilian Journal of Microbiology, 2008, 39, 133-142.	0.8	45
75	Produção de biotensoativos a partir de resÃduos de óleos e gorduras. Food Science and Technology, 2008, 28, 34-38.	0.8	7
76	Use of weathered diesel oil as a low-cost raw material for biosurfactant production. Brazilian Journal of Chemical Engineering, 2008, 25, 269-274.	0.7	13
77	Biodegradability of commercial and weathered diesel oils. Brazilian Journal of Microbiology, 2008, 39, 133-42.	0.8	9
78	Cyclodextrin glycosyltransferase production by new Bacillus sp. strains isolated from brazilian soil. Brazilian Journal of Microbiology, 2008, 39, 682-8.	0.8	4
79	Optimization of cyclodextrin glucanotransferase production from Bacillus clausii E16 in submerged fermentation using response surface methodology. Applied Biochemistry and Biotechnology, 2007, 137-140, 27-40.	1.4	6
80	Optimization of Cyclodextrin Glucanotransferase Production From Bacillus clausii E16 in Submerged Fermentation Using Response Surface Methodology., 2007,, 27-40.		0
81	Production of \hat{l}^2 -Galactosidase by Trichoderma reesei FTKO-39 in Wheat Bran: Partial Purification of Two Isozymes. Applied Biochemistry and Biotechnology, 2006, 133, 163-170.	1.4	4
82	Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochemistry, 2006, 41, 483-488.	1.8	115
83	Oil Wastes as Unconventional Substrates for Rhamnolipid Biosurfactant Production by Pseudomonas aeruginosa LBI. Biotechnology Progress, 2005, 21, 1562-1566.	1.3	165
84	Rhamnolipid Surfactants: An Update on the General Aspects of These Remarkable Biomolecules. Biotechnology Progress, 2005, 21, 1593-1600.	1.3	249
85	Yacon (Polymnia sanchifolia) extract as a substrate to produce inulinase by Kluyveromyces marxianus var. bulgaricus. Journal of Food Engineering, 2005, 66, 301-305.	2.7	77
86	Microbial rennet produced by Mucor miehei in solid-state and submerged fermentation. Brazilian Archives of Biology and Technology, 2005, 48, 931-937.	0.5	31
87	Isolation of natural inhibitors of papain obtained from Carica papaya latex. Brazilian Archives of Biology and Technology, 2004, 47, 747-754.	0.5	12
88	Production of CGTase by a Bacillus alkalophilic CGII strain isolated from wastewater of a manioc flour industry. Brazilian Journal of Microbiology, 2004, 35, 255-260.	0.8	14
89	Production and purification of an Endo \hat{A} –1,4-beta-Xylanase from Humicola grisea var. thermoidea by electroelution. Brazilian Journal of Microbiology, 2003, 34, 124.	0.8	7
90	Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. Journal of Food Engineering, 2002, 54, 283-288.	2.7	200

#	Article	IF	CITATIONS
91	Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2000, 24, 421-430.	1.4	79
92	Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. Journal of Industrial Microbiology and Biotechnology, 2000, 25, 63-69.	1.4	86
93	Purification of papain from fresh latex of Carica papaya. Brazilian Archives of Biology and Technology, 2000, 43, 501-507.	0.5	37
94	Prospective Biodegradable Plastics from Biomass Conversion Processes. , 0, , .		22