
Yan Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7762629/publications.pdf Version: 2024-02-01

ΥλΝ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Molecular Recognition of Enzymes and Modulation of Enzymatic Activity by Nanoparticle Conformational Sensors. Chemical Communications, 2022, , .	4.1	2
2	Environmental modulation of chiral prolinamide catalysts for stereodivergent conjugate addition. Journal of Catalysis, 2022, 406, 126-133.	6.2	2
3	Dynamic Tuning in Synthetic Glycosidase for Selective Hydrolysis of Alkyl and Aryl Glycosides. Journal of Organic Chemistry, 2022, 87, 4195-4203.	3.2	3
4	Site-Selective Catalytic Epoxidation of Alkenes with Tunable Atomic Precision by Molecularly Imprinted Artificial Epoxidases. ACS Catalysis, 2022, 12, 3444-3451.	11.2	9
5	Molecularly imprinted materials for glycan recognition and processing. Journal of Materials Chemistry B, 2022, 10, 6607-6617.	5.8	5
6	Oxidative Cleavage of Glycosidic Bonds by Synthetic Mimics of Lytic Polysaccharide Monooxygenases. Organic Letters, 2022, 24, 3426-3430.	4.6	5
7	Imprinted polymeric nanoparticles as artificial enzymes for ester hydrolysis at room temperature and pH 7. Chem Catalysis, 2022, 2, 2049-2065.	6.1	17
8	Molecularly imprinted micelles for fluorescent sensing of nonsteroidal anti-inflammatory drugs (NSAIDs). Reactive and Functional Polymers, 2021, 158, 104759.	4.1	11
9	Controlling Kinase Activities by Selective Inhibition of Peptide Substrates. Journal of the American Chemical Society, 2021, 143, 639-643.	13.7	16
10	Tunable Artificial Enzyme–Cofactor Complex for Selective Hydrolysis of Acetals. Journal of Organic Chemistry, 2021, 86, 1701-1711.	3.2	8
11	Synthetic glycosidases for the precise hydrolysis of oligosaccharides and polysaccharides. Chemical Science, 2021, 12, 374-383.	7.4	22
12	Sequence‣elective Protection of Peptides from Proteolysis. Angewandte Chemie, 2021, 133, 11192-11197.	2.0	2
13	Sequence‣elective Protection of Peptides from Proteolysis. Angewandte Chemie - International Edition, 2021, 60, 11092-11097.	13.8	10
14	Selective Hydrolysis of Aryl Esters under Acidic and Neutral Conditions by a Synthetic Aspartic Protease Mimic. ACS Catalysis, 2021, 11, 3938-3942.	11.2	16
15	Molecularly Imprinted Synthetic Glucosidase for the Hydrolysis of Cellulose in Aqueous and Nonaqueous Solutions. Journal of the American Chemical Society, 2021, 143, 5172-5181.	13.7	47
16	Tandem Aldol Reaction from Acetal Mixtures by an Artificial Enzyme with Site-Isolated Acid and Base Functionalities. ACS Applied Polymer Materials, 2021, 3, 2776-2784.	4.4	9
17	Frontispiz: Sequenceâ€Selective Protection of Peptides from Proteolysis. Angewandte Chemie, 2021, 133, .	2.0	0
18	Frontispiece: Sequence elective Protection of Peptides from Proteolysis. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0

#	Article	IF	CITATIONS
19	Substrate Protection in Controlled Enzymatic Transformation of Peptides and Proteins. ChemBioChem, 2021, 22, 2680-2687.	2.6	1
20	pH-Controlled Nanoparticle Catalysts for Highly Selective Tandem Henry Reaction from Mixtures. ACS Catalysis, 2020, 10, 13973-13977.	11.2	11
21	Synthetic Glycosidase Distinguishing Glycan and Glycosidic Linkage in Its Catalytic Hydrolysis. ACS Catalysis, 2020, 10, 13800-13808.	11.2	13
22	Synthetic lectins for selective binding of glycoproteins in water. Chemical Communications, 2020, 56, 10199-10202.	4.1	18
23	Selective Binding of Complex Glycans and Glycoproteins in Water by Molecularly Imprinted Nanoparticles. Nano Letters, 2020, 20, 5106-5110.	9.1	31
24	Molecularly Imprinted Polymeric Receptors with Interfacial Hydrogen Bonds for Peptide Recognition in Water. ACS Applied Polymer Materials, 2020, 2, 3171-3180.	4.4	21
25	Selective Binding of Dopamine and Epinephrine in Water by Molecularly Imprinted Fluorescent Receptors. Chemistry - an Asian Journal, 2020, 15, 1035-1038.	3.3	3
26	Chiral Gating for Size- and Shape-Selective Asymmetric Catalysis. Journal of the American Chemical Society, 2019, 141, 13749-13752.	13.7	30
27	Zwitterionic Molecularly Imprinted Cross-Linked Micelles for Alkaloid Recognition in Water. Journal of Organic Chemistry, 2019, 84, 13457-13464.	3.2	9
28	Effects of nano-confinement and conformational mobility on molecular imprinting of cross-linked micelles. Organic and Biomolecular Chemistry, 2019, 17, 8611-8617.	2.8	21
29	General Method for Peptide Recognition in Water through Bioinspired Complementarity. Chemistry of Materials, 2019, 31, 4889-4896.	6.7	29
30	Controlling Product Inhibition through Substrate-Specific Active Sites in Nanoparticle-Based Phosphodiesterase and Esterase. ACS Catalysis, 2019, 9, 5019-5024.	11.2	25
31	Recognition and protection of glycosphingolipids by synthetic nanoparticle receptors. Chemical Communications, 2019, 55, 4773-4776.	4.1	5
32	A Baitâ€and‣witch Method for the Construction of Artificial Esterases for Substrate‣elective Hydrolysis. Chemistry - A European Journal, 2019, 25, 7702-7710.	3.3	10
33	Synthetic nanoparticles for selective hydrolysis of bacterial autoinducers in quorum sensing. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 978-981.	2.2	9
34	Rücktitelbild: Efficient Lightâ€Harvesting Systems with Tunable Emission through Controlled Precipitation in Confined Nanospace (Angew. Chem. 6/2019). Angewandte Chemie, 2019, 131, 1864-1864.	2.0	0
35	Tuning surfaceâ€crossâ€ŀinking of molecularly imprinted crossâ€ŀinked micelles for molecular recognition in water. Journal of Molecular Recognition, 2019, 32, e2769.	2.1	6
36	Efficient Lightâ€Harvesting Systems with Tunable Emission through Controlled Precipitation in Confined Nanospace. Angewandte Chemie - International Edition, 2019, 58, 1643-1647.	13.8	76

#	Article	IF	CITATIONS
37	Efficient Lightâ€Harvesting Systems with Tunable Emission through Controlled Precipitation in Confined Nanospace. Angewandte Chemie, 2019, 131, 1657-1661.	2.0	23
38	Selective Binding of Folic Acid and Derivatives by Imprinted Nanoparticle Receptors in Water. Bioconjugate Chemistry, 2018, 29, 1438-1445.	3.6	14
39	Sequenceâ€Selective Recognition of Peptides in Aqueous Solution: A Supramolecular Approach through Micellar Imprinting. Chemistry - A European Journal, 2018, 24, 14001-14009.	3.3	17
40	Binding-promoted chemical reaction in the nanospace of a binding site: effects of environmental constriction. Organic and Biomolecular Chemistry, 2018, 16, 2855-2859.	2.8	12
41	Aromatically functionalized pseudo-crown ethers with unusual solvent response and enhanced binding properties. Organic and Biomolecular Chemistry, 2018, 16, 1627-1631.	2.8	6
42	Waterâ€Soluble Nanoparticle Receptors Supramolecularly Coded for Acidic Peptides. Chemistry - A European Journal, 2018, 24, 150-158.	3.3	27
43	Frontispiece: Sequenceâ€elective Recognition of Peptides in Aqueous Solution: A Supramolecular Approach through Micellar Imprinting. Chemistry - A European Journal, 2018, 24, .	3.3	0
44	Molecularly imprinted artificial esterases with highly specific active sites and precisely installed catalytic groups. Organic and Biomolecular Chemistry, 2018, 16, 5580-5584.	2.8	12
45	Artificial Zinc Enzymes with Fine-Tuned Active Sites for Highly Selective Hydrolysis of Activated Esters. ACS Catalysis, 2018, 8, 8154-8161.	11.2	45
46	Intramolecularly enhanced molecular tweezers with unusually strong binding for aromatic guests in unfavorable solvents. Organic and Biomolecular Chemistry, 2018, 16, 3885-3888.	2.8	0
47	Fluorescent nanoparticle sensors with tailor-made recognition units and proximate fluorescent reporter groups. New Journal of Chemistry, 2018, 42, 9377-9380.	2.8	16
48	Surface ligands in the imprinting and binding of molecularly imprinted cross-linked micelles. Supramolecular Chemistry, 2018, 30, 929-939.	1.2	3
49	Sequence-Selective Binding of Oligopeptides in Water through Hydrophobic Coding. Journal of the American Chemical Society, 2017, 139, 2188-2191.	13.7	63
50	Imprinted micelles for chiral recognition in water: shape, depth, and number of recognition sites. Organic and Biomolecular Chemistry, 2017, 15, 4851-4858.	2.8	20
51	A General Method for Selective Recognition of Monosaccharides and Oligosaccharides in Water. Journal of the American Chemical Society, 2017, 139, 829-835.	13.7	81
52	Peptide-Binding Nanoparticle Materials with Tailored Recognition Sites for Basic Peptides. Chemistry of Materials, 2017, 29, 9284-9291.	6.7	28
53	Environmental Engineering of Pd Nanoparticle Catalysts for Catalytic Hydrogenation of CO ₂ and Bicarbonate. ACS Applied Materials & Interfaces, 2017, 9, 38436-38444.	8.0	17
54	Intrinsic Hydrophobicity versus Intraguest Interactions in Hydrophobically Driven Molecular Recognition in Water. Organic Letters, 2017, 19, 4159-4162.	4.6	5

#	Article	IF	CITATIONS
55	Crossâ€Linked Micelles with Enzymeâ€Like Active Sites for Biomimetic Hydrolysis of Activated Esters. Helvetica Chimica Acta, 2017, 100, e1700147.	1.6	9
56	Surface-Cross-Linked Micelles as Multifunctionalized Organic Nanoparticles for Controlled Release, Light Harvesting, and Catalysis. Langmuir, 2016, 32, 5703-5713.	3.5	34
57	Water-Soluble Molecularly Imprinted Nanoparticle Receptors with Hydrogen-Bond-Assisted Hydrophobic Binding. Journal of Organic Chemistry, 2016, 81, 7518-7526.	3.2	24
58	Selective Recognition of <scp>d</scp> -Aldohexoses in Water by Boronic Acid-Functionalized, Molecularly Imprinted Cross-Linked Micelles. Journal of the American Chemical Society, 2016, 138, 9759-9762.	13.7	78
59	Molecularly Responsive Binding through Co-occupation of Binding Space: A Lock–Key Story. Organic Letters, 2016, 18, 1650-1653.	4.6	21
60	Enhancing binding affinity and selectivity through preorganization and cooperative enhancement of the receptor. Chemical Communications, 2016, 52, 4345-4348.	4.1	16
61	Design and Synthesis of Crossâ€Linked Micellar Particles to Assist Microalgae Lipid Recovery from Aqueous Extract. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 51-60.	1.9	2
62	Inside Back Cover: A Heteroleptic Ferrous Complex with Mesoionic Bis(1,2,3â€triazolâ€5â€ylidene) Ligands: Taming the MLCT Excited State of Iron(II) (Chem. Eur. J. 9/2015). Chemistry - A European Journal, 2015, 21, 3831-3831.	3.3	1
63	Polymeric Nanoparticle Receptors as Synthetic Antibodies for Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). ACS Biomaterials Science and Engineering, 2015, 1, 425-430.	5.2	35
64	Rationally Designed Cooperatively Enhanced Receptors To Magnify Host–Guest Binding in Water. Journal of the American Chemical Society, 2015, 137, 843-849.	13.7	28
65	Conformationally Switchable Water-Soluble Fluorescent Bischolate Foldamers as Membrane-Curvature Sensors. Langmuir, 2015, 31, 3919-3925.	3.5	9
66	Self-assembled light-harvesting supercomplexes from fluorescent surface-cross-linked micelles. Chemical Communications, 2015, 51, 12939-12942.	4.1	43
67	Improving reactivity and selectivity of aqueous-based Heck reactions by the local hydrophobicity of phosphine ligands. Tetrahedron, 2015, 71, 8263-8270.	1.9	3
68	Palladium–gold bimetallic nanoparticle catalysts prepared by "controlled release―from metal-loaded interfacially cross-linked reverse micelles. New Journal of Chemistry, 2015, 39, 2459-2466.	2.8	10
69	Waterâ€Soluble Molecularly Imprinted Nanoparticles (MINPs) with Tailored, Functionalized, Modifiable Binding Pockets. Chemistry - A European Journal, 2015, 21, 655-661.	3.3	40
70	Interfacial catalysis of aldol reactions by prolinamide surfactants in reverse micelles. Organic and Biomolecular Chemistry, 2015, 13, 770-775.	2.8	6
71	Rigidity versus amphiphilicity in transmembrane nanopore formation by cholate-based macrocycles. Supramolecular Chemistry, 2014, 26, 302-311.	1.2	0
72	Environmental control of nucleophilic catalysis in water. Chemical Communications, 2014, 50, 2718.	4.1	26

#	Article	IF	CITATIONS
73	Room Temperature Hydroamination of Alkynes Catalyzed by Gold Clusters in Interfacially Cross-Linked Reverse Micelles. ACS Catalysis, 2014, 4, 688-691.	11.2	39
74	Molecularly imprinted nanoparticles as tailor-made sensors for small fluorescent molecules. Chemical Communications, 2014, 50, 5752.	4.1	66
75	Metalloenzyme-Mimicking Supramolecular Catalyst for Highly Active and Selective Intramolecular Alkyne Carboxylation. Journal of the American Chemical Society, 2014, 136, 5579-5582.	13.7	29
76	Protein-Mimetic, Molecularly Imprinted Nanoparticles for Selective Binding of Bile Salt Derivatives in Water. Journal of the American Chemical Society, 2013, 135, 12552-12555.	13.7	117
77	Water-soluble, membrane-permeable organic fluorescent nanoparticles with large tunability in emission wavelengths and Stokes shifts. Chemical Communications, 2013, 49, 5877.	4.1	26
78	Histidine-functionalized water-soluble nanoparticles for biomimetic nucleophilic/general-base catalysis under acidic conditions. Organic and Biomolecular Chemistry, 2013, 11, 6849.	2.8	19
79	Tuning Nanopore Formation of Oligocholate Macrocycles by Carboxylic Acid Dimerization in Lipid Membranes. Journal of Organic Chemistry, 2013, 78, 4610-4614.	3.2	6
80	Oligocholate foldamer with â€~prefolded' macrocycles for enhanced folding in solution and surfactant micelles. Tetrahedron, 2013, 69, 6051-6059.	1.9	5
81	Conformationally Controlled Oligocholate Membrane Transporters: Learning through Water Play. Accounts of Chemical Research, 2013, 46, 2763-2772.	15.6	93
82	Properties of surface-cross-linked micelles probed by fluorescence spectroscopy and their catalysis of phosphate ester hydrolysis. Journal of Colloid and Interface Science, 2013, 390, 151-157.	9.4	26
83	Cooperatively Enhanced Receptors for Biomimetic Molecular Recognition. ChemPhysChem, 2013, 14, 3878-3885.	2.1	17
84	Effects of Micelle Properties on the Conformation of Oligocholates and Importance of Rigidity of Foldamers. Journal of Organic Chemistry, 2012, 77, 556-562.	3.2	3
85	Flexible oligocholate foldamers as membrane transporters and their guest-dependent transport mechanism. Organic and Biomolecular Chemistry, 2012, 10, 260-266.	2.8	7
86	Hydrogen bond-assisted macrocyclic oligocholate transporters in lipid membranes. Organic and Biomolecular Chemistry, 2012, 10, 5077.	2.8	5
87	Artificial metalloenzymes via encapsulation of hydrophobic transition-metal catalysts in surface-crosslinked micelles (SCMs). Chemical Communications, 2012, 48, 9998.	4.1	32
88	Template Synthesis of Subnanometer Gold Clusters in Interfacially Cross-Linked Reverse Micelles Mediated by Confined Counterions. Langmuir, 2012, 28, 3606-3613.	3.5	17
89	Aggregation and Dynamics of Oligocholate Transporters in Phospholipid Bilayers Revealed by Solid-State NMR Spectroscopy. Langmuir, 2012, 28, 17071-17078.	3.5	13
90	Effects of Amphiphile Topology on the Aggregation of Oligocholates in Lipid Membranes: Macrocyclic versus Linear Amphiphiles. Langmuir, 2012, 28, 8165-8173.	3.5	6

#	Article	IF	CITATIONS
91	Size-Selective Phase-Transfer Catalysis with Interfacially Cross-Linked Reverse Micelles. Organic Letters, 2012, 14, 784-787.	4.6	20
92	Protection/Deprotection of Surface Activity and Its Applications in the Controlled Release of Liposomal Contents. Langmuir, 2012, 28, 4152-4159.	3.5	32
93	Tunable Fusion and Aggregation of Liposomes Triggered by Multifunctional Surface-Cross-Linked Micelles. Bioconjugate Chemistry, 2012, 23, 1721-1725.	3.6	17
94	Aromatically Functionalized Cyclic Tricholate Macrocycles: Aggregation, Transmembrane Pore Formation, Flexibility, and Cooperativity. Journal of Organic Chemistry, 2012, 77, 4679-4687.	3.2	8
95	Interfacially Crossâ€Linked Reverse Micelles as Soluble Support for Palladium Nanoparticle Catalysts. Helvetica Chimica Acta, 2012, 95, 863-871.	1.6	9
96	Artificial Lightâ€Harvesting System Based on Multifunctional Surfaceâ€Crossâ€Linked Micelles. Angewandte Chemie - International Edition, 2012, 51, 2088-2092.	13.8	146
97	Water-Templated Transmembrane Nanopores from Shape-Persistent Oligocholate Macrocycles. Journal of the American Chemical Society, 2011, 133, 141-147.	13.7	45
98	Enhancing Binding Affinity by the Cooperativity between Host Conformation and Host–Guest Interactions. Journal of the American Chemical Society, 2011, 133, 8862-8865.	13.7	58
99	Translocation of Hydrophilic Molecules across Lipid Bilayers by Salt-Bridged Oligocholates. Langmuir, 2011, 27, 4936-4944.	3.5	20
100	Facile Preparation of Organic Nanoparticles by Interfacial Cross-Linking of Reverse Micelles and Template Synthesis of Subnanometer Auâ^Pt Nanoparticles. ACS Nano, 2011, 5, 2637-2646.	14.6	63
101	Controlled Release from Cleavable Polymerized Liposomes upon Redox and pH Stimulation. Bioconjugate Chemistry, 2011, 22, 523-528.	3.6	49
102	Cholate-derived amphiphilic molecular baskets as glucose transporters across lipid membranes. Chemical Communications, 2011, 47, 8970.	4.1	12
103	Oligocholate Foldamers as Carriers for Hydrophilic Molecules across Lipid Bilayers. Chemistry - A European Journal, 2011, 17, 12444-12451.	3.3	28
104	Time-dependent shrinkage of polymeric micelles of amphiphilic block copolymers containing semirigid oligocholate hydrophobes. Journal of Colloid and Interface Science, 2011, 353, 420-425.	9.4	12
105	Rapid Release of Entrapped Contents from Multi-Functionalizable, Surface Cross-Linked Micelles upon Different Stimulation. Journal of the American Chemical Society, 2010, 132, 10642-10644.	13.7	109
106	Environmental Effects Dominate the Folding of Oligocholates in Solution, Surfactant Micelles, and Lipid Membranes. Journal of the American Chemical Society, 2010, 132, 9890-9899.	13.7	39
107	Facile Synthesis of Multivalent Water-Soluble Organic Nanoparticles via "Surface Clicking―of Alkynylated Surfactant Micelles. Macromolecules, 2010, 43, 4020-4022.	4.8	86
108	A DMAP-functionalized oligocholate foldamer for solvent-responsive catalysis. Tetrahedron, 2009, 65, 7311-7316.	1.9	30

#	Article	IF	CITATIONS
109	Conformation of Oligocholate Foldamers with 4-Aminobutyroyl Spacers. Journal of Organic Chemistry, 2009, 74, 834-843.	3.2	17
110	Spacer-Dependent Folding and Aggregation of Oligocholates in SDS Micelles. Journal of Organic Chemistry, 2009, 74, 7470-7480.	3.2	16
111	Efficient Construction of Oligocholate Foldamers via "Click―Chemistry and Their Tolerance of Structural Heterogeneity. Organic Letters, 2009, 11, 69-72.	4.6	15
112	Controlling the Conformation of Oligocholate Foldamers by Surfactant Micelles. Journal of Organic Chemistry, 2008, 73, 5498-5505.	3.2	15
113	Preferential Solvation within Hydrophilic Nanocavities and Its Effect on the Folding of Cholate Foldamers. Journal of the American Chemical Society, 2007, 129, 218-225.	13.7	59
114	Cholateâ^'Glutamic Acid Hybrid Foldamer and Its Fluorescent Detection of Zn2+. Organic Letters, 2007, 9, 2891-2894.	4.6	54
115	Solvent-Responsive Metalloporphyrins:Â Binding and Catalysis. Organometallics, 2007, 26, 358-364.	2.3	18
116	Catalyzing Methanolysis of Alkyl Halides in the Interior of an Amphiphilic Molecular Basket. Organic Letters, 2007, 9, 5147-5150.	4.6	18
117	Facial amphiphiles in molecular recognition: From unusual aggregates to solvophobically driven foldamers. Current Opinion in Colloid and Interface Science, 2007, 12, 92-97.	7.4	44
118	Tuning the Sensitivity of a Foldamer-Based Mercury Sensor by Its Folding Energy. Journal of the American Chemical Society, 2006, 128, 9988-9989.	13.7	217
119	Detection of Hg2+in Aqueous Solutions with a Foldamer-Based Fluorescent Sensor Modulated by Surfactant Micelles. Organic Letters, 2006, 8, 4715-4717.	4.6	105
120	An Amphiphilic Molecular Basket Sensitive to Both Solvent Changes and UV Irradiation. Journal of Organic Chemistry, 2006, 71, 9491-9494.	3.2	28
121	Solvent-Induced Amphiphilic Molecular Baskets:Â Unimolecular Reversed Micelles with Different Size, Shape, and Flexibility. Journal of Organic Chemistry, 2006, 71, 7205-7213.	3.2	42
122	High guest inclusion in 3β-amino-7α,12α-dihydroxycholan-24-oic acid enabled by charge-assisted hydrogen bonds. Tetrahedron, 2006, 62, 6808-6813.	1.9	13
123	Solvent-Tunable Binding of Hydrophilic and Hydrophobic Guests by Amphiphilic Molecular Baskets. Journal of Organic Chemistry, 2005, 70, 7585-7591.	3.2	46
124	Cholic Acid-Derived Facial Amphiphiles with Different Ionic Characteristics. Langmuir, 2005, 21, 6235-6239.	3.5	24
125	Efficient Synthesis of Water-Soluble Calixarenes Using Click Chemistry. Organic Letters, 2005, 7, 1035-1037.	4.6	169
126	Oligomeric Cholates:  Amphiphilic Foldamers with Nanometer-Sized Hydrophilic Cavities. Journal of the American Chemical Society, 2005, 127, 17894-17901.	13.7	98

#	Article	IF	CITATIONS
127	Environmentally Responsive Molecular Baskets:  Unimolecular Mimics of Both Micelles and Reversed Micelles. Organic Letters, 2004, 6, 3187-3189.	4.6	47
128	Preparation of the first tricoordinate silyl cation. Journal of Physical Organic Chemistry, 2001, 14, 370-379.	1.9	89
129	Synthesis of Cored Dendrimers with Internal Cross-Links. Angewandte Chemie - International Edition, 2001, 40, 1962-1966.	13.8	65
130	The Allyl Leaving Group Approach to Tricoordinate Silyl, Germyl, and Stannyl Cations. Journal of the American Chemical Society, 1999, 121, 5001-5008.	13.7	155
131	The β Effect of Silicon and Related Manifestations of σ Conjugation. Accounts of Chemical Research, 1999, 32, 183-190.	15.6	247
132	β-Silyl and β-Germyl Carbocations Stable at Room Temperature. Journal of Organic Chemistry, 1999, 64, 2729-2736.	3.2	104
133	Torsional distortions in trimesitylsilanes and trimesitylgermanes. Journal of Organometallic Chemistry, 1998, 568, 21-31.	1.8	20
134	Computational Evidence for a Free Silylium Ion. Organometallics, 1998, 17, 278-280.	2.3	63
135	The Trimesitylsilylium Cation. Angewandte Chemie International Edition in English, 1997, 36, 400-401.	4.4	179
136	Das Trimesitylsilyliumâ€ l on. Angewandte Chemie, 1997, 109, 389-391.	2.0	59
137	TWO-DIMENSIONAL LATTICE OF SUPERBOATS COMPOSED OF SILICON-CENTERED TETRAHEDRA. Journal of Physical Organic Chemistry, 1997, 10, 229-232.	1.9	17
138	β Effect of Phosphorus Functionalities. Journal of the American Chemical Society, 1996, 118, 3156-3167.	13.7	13
139	A Stable Î ² -Silyl Carbocation. Journal of the American Chemical Society, 1996, 118, 7867-7868.	13.7	84
140	Participation of the .beta. Phosphonate Group in Carbocation Formation. Journal of Organic Chemistry, 1994, 59, 5397-5403.	3.2	14