## Shi-Qiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7761940/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Soft Porous Crystal Based upon Organic Cages That Exhibit Guest-Induced Breathing and Selective Gas<br>Separation. Journal of the American Chemical Society, 2019, 141, 9408-9414.                                                                | 6.6 | 98        |
| 2  | Halogen–C <sub>2</sub> H <sub>2</sub> Binding in Ultramicroporous Metal–Organic Frameworks<br>(MOFs) for Benchmark C <sub>2</sub> H <sub>2</sub> /CO <sub>2</sub> Separation Selectivity.<br>Chemistry - A European Journal, 2020, 26, 4923-4929. | 1.7 | 72        |
| 3  | Highly Selective, Highâ€Capacity Separation of <i>o</i> â€Xylene from C <sub>8</sub> Aromatics by a<br>Switching Adsorbent Layered Material. Angewandte Chemie - International Edition, 2019, 58, 6630-6634.                                      | 7.2 | 69        |
| 4  | Two nanosized 3d–4f clusters featuring four Ln <sub>6</sub> octahedra encapsulating a<br>Zn <sub>4</sub> tetrahedron. Chemical Communications, 2015, 51, 10687-10690.                                                                             | 2.2 | 53        |
| 5  | Coordination Network That Reversibly Switches between Two Nonporous Polymorphs and a High<br>Surface Area Porous Phase. Journal of the American Chemical Society, 2018, 140, 15572-15576.                                                         | 6.6 | 51        |
| 6  | Reversible Switching between Nonporous and Porous Phases of a New SIFSIX Coordination Network<br>Induced by a Flexible Linker Ligand. Journal of the American Chemical Society, 2020, 142, 6896-6901.                                             | 6.6 | 51        |
| 7  | Fabrication of Moisture-Responsive Crystalline Smart Materials for Water Harvesting and Electricity Transduction. Journal of the American Chemical Society, 2021, 143, 7732-7739.                                                                 | 6.6 | 49        |
| 8  | Recyclable switching between nonporous and porous phases of a square lattice ( <b>sql</b> )<br>topology coordination network. Chemical Communications, 2018, 54, 7042-7045.                                                                       | 2.2 | 37        |
| 9  | Spiers Memorial Lecture: Coordination networks that switch between nonporous and porous structures: an emerging class of soft porous crystals. Faraday Discussions, 2021, 231, 9-50.                                                              | 1.6 | 34        |
| 10 | Scalable robust nano-porous Zr-based MOF adsorbent with high-capacity for sustainable water purification. Separation and Purification Technology, 2022, 288, 120620.                                                                              | 3.9 | 32        |
| 11 | Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of<br>Hypersaline Water. Environmental Science & Technology, 2021, 55, 14917-14927.                                                                        | 4.6 | 31        |
| 12 | Benchmark selectivity <i>p</i> -xylene separation by a non-porous molecular solid through liquid or vapor extraction. Chemical Science, 2019, 10, 8850-8854.                                                                                      | 3.7 | 29        |
| 13 | Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H <sub>2</sub> by Calcium<br>Trimesate. Angewandte Chemie - International Edition, 2020, 59, 16188-16194.                                                                | 7.2 | 28        |
| 14 | Magnetic 3d–4f Chiral Clusters Showing Multimetal Site Magneto-Chiral Dichroism. Journal of the<br>American Chemical Society, 2022, 144, 8837-8847.                                                                                               | 6.6 | 28        |
| 15 | Crystal engineering of a rectangular <b>sql</b> coordination network to enable xylenes selectivity over ethylbenzene. Chemical Science, 2020, 11, 6889-6895.                                                                                      | 3.7 | 26        |
| 16 | Comparison of Mechanochemistry vs Solution Methods for Synthesis of 4,4′-Bipyridine-Based<br>Coordination Polymers. ACS Sustainable Chemistry and Engineering, 2019, 7, 19505-19512.                                                              | 3.2 | 23        |
| 17 | Solvent-induced Zn(II) coordination polymers with 1, 3, 5-benzenetricarboxylic acid. Journal of Molecular Structure, 2019, 1184, 219-224.                                                                                                         | 1.8 | 18        |
| 18 | [Cu(4-phenylpyridine) <sub>4</sub> (trifluoromethanesulfonate) <sub>2</sub> ], a Werner complex that exhibits high selectivity for <i>o</i>                                                                                                       | 2.2 | 17        |

SHI-QIANG WANG

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | High Working Capacity Acetylene Storage at Ambient Temperature Enabled by a Switching Adsorbent<br>Layered Material. ACS Applied Materials & Interfaces, 2021, 13, 23877-23883.                                                         | 4.0 | 17        |
| 20 | Highly Selective, Highâ€Capacity Separation of o â€Xylene from C 8 Aromatics by a Switching Adsorbent<br>Layered Material. Angewandte Chemie, 2019, 131, 6702-6706.                                                                     | 1.6 | 10        |
| 21 | Tuning the switching pressure in square lattice coordination networks by metal cation substitution.<br>Materials Advances, 2022, 3, 1240-1247.                                                                                          | 2.6 | 9         |
| 22 | Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H 2 by Calcium Trimesate.<br>Angewandte Chemie, 2020, 132, 16322-16328.                                                                                        | 1.6 | 8         |
| 23 | Selective Adsorption of Water, Methanol, and Ethanol by Naphthalene Diimide-Based Coordination<br>Polymers with Constructed Open Cu <sup>2+</sup> Metal Sites and Separation of<br>Ethanol/Acetonitrile. ACS Omega, 2019, 4, 1995-2000. | 1.6 | 7         |
| 24 | Acetylene storage performance of<br>[Ni(4,4′-bipyridine) <sub>2</sub> (NCS) <sub>2</sub> ] <sub><i>n</i></sub> , a switching square lattice<br>coordination network. Chemical Communications, 2022, 58, 1534-1537.                      | 2.2 | 6         |
| 25 | Reversible single-crystal to single-crystal phase transformation between a new Werner clathrate and its apohost. Dalton Transactions, 2021, 50, 12923-12930.                                                                            | 1.6 | 4         |
| 26 | Supramolecular Cages Based on a Silver Complex as Adaptable Hosts for Polyâ€Aromatic Hydrocarbons.<br>Small, 2020, 16, 2001377.                                                                                                         | 5.2 | 3         |
| 27 | Innentitelbild: Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of<br>H <sub>2</sub> by Calcium Trimesate (Angew. Chem. 37/2020). Angewandte Chemie, 2020, 132, 15898-15898.                                      | 1.6 | 0         |