Pilar GarcÃ-a-Delgado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7761933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic analysis of putative phage-phage interactions on minimum-sized phage cocktails. Scientific Reports, 2022, 12, 2458.	3.3	15
2	The Broad Host Range Phage vB_CpeS_BG3P Is Able to Inhibit Clostridium perfringens Growth. Viruses, 2022, 14, 676.	3.3	7
3	Essential Topics for the Regulatory Consideration of Phages as Clinically Valuable Therapeutic Agents: A Perspective from Spain. Microorganisms, 2022, 10, 717.	3.6	12
4	Combined use of bacteriocins and bacteriophages as food biopreservatives. A review. International Journal of Food Microbiology, 2022, 368, 109611.	4.7	21
5	Understanding the Mechanisms That Drive Phage Resistance in Staphylococci to Prevent Phage Therapy Failure. Viruses, 2022, 14, 1061.	3.3	15
6	Deletion of the amidase domain of endolysin LysRODI enhances antistaphylococcal activity in milk and during fresh cheese production. Food Microbiology, 2022, 107, 104067.	4.2	1
7	Effectiveness of bacteriophages incorporated in gelatine films against Staphylococcus aureus. Food Control, 2021, 121, 107666.	5.5	24
8	Environmental pH is a key modulator of <i>Staphylococcus aureus</i> biofilm development under predation by the virulent phage phiIPLA-RODI. ISME Journal, 2021, 15, 245-259.	9.8	6
9	Synergistic action of phage philPLA-RODI and lytic protein CHAPSH3b: a combination strategy to target Staphylococcus aureus biofilms. Npj Biofilms and Microbiomes, 2021, 7, 39.	6.4	34
10	Targeting biofilms using phages and their enzymes. Current Opinion in Biotechnology, 2021, 68, 251-261.	6.6	37
11	Draft Genome Sequences of the Bap-Producing Strain Staphylococcus aureus V329 and Its Derived Phage-Resistant Mutant BIM-1. Microbiology Resource Announcements, 2021, 10, e0050021.	0.6	1
12	Gram-Positive Pneumonia: Possibilities Offered by Phage Therapy. Antibiotics, 2021, 10, 1000.	3.7	4
13	Design and Selection of Engineered Lytic Proteins With Staphylococcus aureus Decolonizing Activity. Frontiers in Microbiology, 2021, 12, 723834.	3.5	10
14	Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics, 2021, 10, 131.	3.7	65
15	Characterization of Clinical MRSA Isolates from Northern Spain and Assessment of Their Susceptibility to Phage-Derived Antimicrobials. Antibiotics, 2020, 9, 447.	3.7	12
16	Bacteriófagos y endolisinas en la industria alimentaria. Arbor, 2020, 196, 544.	0.3	0
17	Developing Diagnostic and Therapeutic Approaches to Bacterial Infections for a New Era: Implications of Globalization. Antibiotics, 2020, 9, 916.	3.7	11
18	Encapsulation of the Antistaphylococcal Endolysin LysRODI in pH-Sensitive Liposomes. Antibiotics, 2020, 9, 242.	3.7	31

#	Article	IF	CITATIONS
19	Phage Lytic Protein LysRODI Prevents Staphylococcal Mastitis in Mice. Frontiers in Microbiology, 2020, 11, 7.	3.5	28
20	Swapping the roles of bacteriocins and bacteriophages in food biotechnology. Current Opinion in Biotechnology, 2019, 56, 1-6.	6.6	14
21	Preliminary Assessment of Visible, Near-Infrared, and Short-Wavelength–Infrared Spectroscopy with a Portable Instrument for the Detection of Staphylococcus aureus Biofilms on Surfaces. Journal of Food Protection, 2019, 82, 1314-1319.	1.7	3
22	The Perfect Bacteriophage for Therapeutic Applications—A Quick Guide. Antibiotics, 2019, 8, 126.	3.7	83
23	Insight into the Lytic Functions of the Lactococcal Prophage TP712. Viruses, 2019, 11, 881.	3.3	7
24	Methicillin-Resistant Staphylococcus aureus in Hospitals: Latest Trends and Treatments Based on Bacteriophages. Journal of Clinical Microbiology, 2019, 57, .	3.9	58
25	Role of Bacteriophages in the Implementation of a Sustainable Dairy Chain. Frontiers in Microbiology, 2019, 10, 12.	3.5	19
26	Peptidoglycan Hydrolytic Activity of Bacteriophage Lytic Proteins in Zymogram Analysis. Methods in Molecular Biology, 2019, 1898, 107-115.	0.9	1
27	Phage therapy: unexpected drawbacks to reach hospitals. Future Virology, 2019, 14, 779-782.	1.8	6
28	Phage or foe: an insight into the impact of viral predation on microbial communities. ISME Journal, 2018, 12, 1171-1179.	9.8	124
29	Are Phage Lytic Proteins the Secret Weapon To Kill <i>Staphylococcus aureus</i> ?. MBio, 2018, 9, .	4.1	98
30	Practical Method for Isolation of Phage Deletion Mutants. Methods and Protocols, 2018, 1, 6.	2.0	17
31	Comparative analysis of different preservation techniques for the storage of Staphylococcus phages aimed for the industrial development of phage-based antimicrobial products. PLoS ONE, 2018, 13, e0205728.	2.5	63
32	Analysis of Different Parameters Affecting Diffusion, Propagation and Survival of Staphylophages in Bacterial Biofilms. Frontiers in Microbiology, 2018, 9, 2348.	3.5	43
33	Strategies to Encapsulate the Staphylococcus aureus Bacteriophage philPLA-RODI. Viruses, 2018, 10, 495.	3.3	33
34	Study of the Interactions Between Bacteriophage philPLA-RODI and Four Chemical Disinfectants for the Elimination of Staphylococcus aureus Contamination. Viruses, 2018, 10, 103.	3.3	33
35	Optimizing Propagation of Staphylococcus aureus Infecting Bacteriophage vB_SauM-philPLA-RODI on Staphylococcus xylosus Using Response Surface Methodology. Viruses, 2018, 10, 153.	3.3	17
36	Lysogenization of Staphylococcus aureus RN450 by phages ï•11 and ï•80î± leads to the activation of the SigB regulon. Scientific Reports, 2018, 8, 12662.	3.3	17

#	Article	IF	CITATIONS
37	Application of Bacteriophages in the Agro-Food Sector: A Long Way Toward Approval. Frontiers in Cellular and Infection Microbiology, 2018, 8, 296.	3.9	78
38	Characterizing the Transcriptional Effects of Endolysin Treatment on Established Biofilms of Staphylococcus aureus. Bio-protocol, 2018, 8, e2891.	0.4	2
39	Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control, 2017, 73, 1474-1482.	5.5	57
40	Downregulation of Autolysin-Encoding Genes by Phage-Derived Lytic Proteins Inhibits Biofilm Formation in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	27
41	The Behavior of Staphylococcus aureus Dual-Species Biofilms Treated with Bacteriophage philPLA-RODI Depends on the Accompanying Microorganism. Applied and Environmental Microbiology, 2017, 83, .	3.1	52
42	Bacteriophages in the Dairy Environment: From Enemies to Allies. Antibiotics, 2017, 6, 27.	3.7	51
43	Editorial: Phage Therapy: Past, Present and Future. Frontiers in Microbiology, 2017, 8, 981.	3.5	163
44	Real-Time Assessment of Staphylococcus aureus Biofilm Disruption by Phage-Derived Proteins. Frontiers in Microbiology, 2017, 8, 1632.	3.5	27
45	Low-level predation by lytic phage philPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus. Scientific Reports, 2017, 7, 40965.	3.3	51
46	Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Critical Reviews in Biotechnology, 2016, 36, 1-11.	9.0	75
47	Monitoring Soil Sealing in Guadarrama River Basin, Spain, and Its Potential Impact in Agricultural Areas. Agriculture (Switzerland), 2016, 6, 7.	3.1	9
48	Reduced Binding of the Endolysin LysTP712 to Lactococcus lactis ΔftsH Contributes to Phage Resistance. Frontiers in Microbiology, 2016, 7, 138.	3.5	7
49	Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry. Frontiers in Microbiology, 2016, 7, 825.	3.5	178
50	Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology. PLoS ONE, 2016, 11, e0163966.	2.5	67
51	Prevalence and predictors of inadequate patient medication knowledge. Journal of Evaluation in Clinical Practice, 2016, 22, 808-815.	1.8	27
52	Phage sensitivity and prophage carriage in Staphylococcus aureus isolated from foods in Spain and New Zealand. International Journal of Food Microbiology, 2016, 230, 16-20.	4.7	7
53	â€~Artilysation' of endolysin λSa2lys strongly improves its enzymatic and antibacterial activity against streptococci. Scientific Reports, 2016, 6, 35382.	3.3	52
54	Role of the Pre-neck Appendage Protein (Dpo7) from Phage vB_SepiS-philPLA7 as an Anti-biofilm Agent in Staphylococcal Species. Frontiers in Microbiology, 2015, 6, 1315.	3.5	81

#	Article	IF	CITATIONS
55	Molecular characterization and antimicrobial susceptibility of Staphylococcus aureus from small-scale dairy systems in the highlands of Central México. Dairy Science and Technology, 2015, 95, 181-196.	2.2	11
56	Two Phages, phiIPLA-RODI and phiIPLA-C1C, Lyse Mono- and Dual-Species Staphylococcal Biofilms. Applied and Environmental Microbiology, 2015, 81, 3336-3348.	3.1	124
57	Listeriaphages and coagulin C23 act synergistically to kill Listeria monocytogenes in milk under refrigeration conditions. International Journal of Food Microbiology, 2015, 205, 68-72.	4.7	31
58	Effective Removal of Staphylococcal Biofilms by the Endolysin LysH5. PLoS ONE, 2014, 9, e107307.	2.5	164
59	Differential expression of cro, the lysogenic cycle repressor determinant of bacteriophage A2, in Lactobacillus casei and Escherichia coli. Virus Research, 2014, 183, 63-66.	2.2	6
60	Three proposed new bacteriophage genera of staphylococcal phages: "3alikevirusâ€, "77likevirus―and "Phietalikevirus― Archives of Virology, 2014, 159, 389-398.	2.1	22
61	Lack of the host membrane protease FtsH hinders release of the Lactococcus lactis bacteriophage TP712. Journal of General Virology, 2013, 94, 2814-2818.	2.9	12
62	Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Critical Reviews in Microbiology, 2013, 39, 427-434.	6.1	126
63	The Peptidoglycan Hydrolase of Staphylococcus aureus Bacteriophage ï•11 Plays a Structural Role in the Viral Particle. Applied and Environmental Microbiology, 2013, 79, 6187-6190.	3.1	20
64	Potential of the Virion-Associated Peptidoglycan Hydrolase HydH5 and Its Derivative Fusion Proteins in Milk Biopreservation. PLoS ONE, 2013, 8, e54828.	2.5	47
65	The Phage Lytic Proteins from the Staphylococcus aureus Bacteriophage vB_SauS-philPLA88 Display Multiple Active Catalytic Domains and Do Not Trigger Staphylococcal Resistance. PLoS ONE, 2013, 8, e64671.	2.5	51
66	The Tape Measure Protein of the Staphylococcus aureus Bacteriophage vB_SauS-philPLA35 Has an Active Muramidase Domain. Applied and Environmental Microbiology, 2012, 78, 6369-6371.	3.1	24
67	Enhanced Staphylolytic Activity of the Staphylococcus aureus Bacteriophage vB_SauS-philPLA88 HydH5 Virion-Associated Peptidoglycan Hydrolase: Fusions, Deletions, and Synergy with LysH5. Applied and Environmental Microbiology, 2012, 78, 2241-2248.	3.1	72
68	Lytic Activity of LysH5 Endolysin Secreted by Lactococcus lactis Using the Secretion Signal Sequence of Bacteriocin Lcn972. Applied and Environmental Microbiology, 2012, 78, 3469-3472.	3.1	20
69	Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. International Journal of Food Microbiology, 2012, 158, 23-27.	4.7	77
70	Incidence of Staphylococcus aureus and Analysis of Associated Bacterial Communities on Food Industry Surfaces. Applied and Environmental Microbiology, 2012, 78, 8547-8554.	3.1	170
71	Genomic characterization of two Staphylococcus epidermidis bacteriophages with anti-biofilm potential. BMC Genomics, 2012, 13, 228.	2.8	61
72	Typing of bacteriophages by randomly amplified polymorphic DNA (RAPD)-PCR to assess genetic diversity. FEMS Microbiology Letters, 2011, 322, 90-97.	1.8	49

Pilar GarcÃa-Delgado

#	Article	IF	CITATIONS
73	Characterization of <i>Staphylococcus aureus</i> strains involved in human and bovine mastitis. FEMS Immunology and Medical Microbiology, 2011, 62, 225-235.	2.7	59
74	Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureusbacteriophage vB_SauS-philPLA88. BMC Microbiology, 2011, 11, 138.	3.3	63
75	Isolation and Characterization of Bacteriophages Infecting Staphylococcus epidermidis. Current Microbiology, 2010, 61, 601-608.	2.2	56
76	Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. International Journal of Food Microbiology, 2010, 141, 151-155.	4.7	142
77	Use of Logistic Regression for Prediction of the Fate of <i>Staphylococcus aureus</i> in Pasteurized Milk in the Presence of Two Lytic Phages. Applied and Environmental Microbiology, 2010, 76, 6038-6046.	3.1	26
78	Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends in Food Science and Technology, 2010, 21, 373-382.	15.1	183
79	Functional Genomic Analysis of Two <i>Staphylococcus aureus</i> Phages Isolated from the Dairy Environment. Applied and Environmental Microbiology, 2009, 75, 7663-7673.	3.1	46
80	Prophage induction in Lactococcus lactis by the bacteriocin Lactococcin 972. International Journal of Food Microbiology, 2009, 129, 99-102.	4.7	35
81	Prevalence of bacteriophages infecting Staphylococcus aureus in dairy samples and their potential as biocontrol agents. Journal of Dairy Science, 2009, 92, 3019-3026.	3.4	82
82	Bacteriophages and their application in food safety. Letters in Applied Microbiology, 2008, 47, 479-485.	2.2	244
83	Nisin-bacteriophage crossresistance in Staphylococcus aureus. International Journal of Food Microbiology, 2008, 122, 253-258.	4.7	61
84	Lytic activity of the recombinant staphylococcal bacteriophage ΦH5 endolysin active against Staphylococcus aureus in milk. International Journal of Food Microbiology, 2008, 128, 212-218.	4.7	161
85	Membranous glomerulonephritis in the Iberian lynx (Lynx pardinus). Veterinary Immunology and Immunopathology, 2008, 121, 34-43.	1.2	26
86	Isolation of New Stenotrophomonas Bacteriophages and Genomic Characterization of Temperate Phage S1. Applied and Environmental Microbiology, 2008, 74, 7552-7560.	3.1	36
87	Biocontrol of Staphylococcus aureus in curd manufacturing processes using bacteriophages. International Dairy Journal, 2007, 17, 1232-1239.	3.0	127
88	Detailed model of shelter areas for the Cantabrian brown bear. Ecological Informatics, 2007, 2, 297-307.	5.2	52
89	A Second Case of â~'1 Ribosomal Frameshifting Affecting a Major Virion Protein of the Lactobacillus Bacteriophage A2. Journal of Bacteriology, 2005, 187, 8201-8204.	2.2	17
90	A â^'1 Ribosomal Frameshift in the Transcript That Encodes the Major Head Protein of Bacteriophage A2 Mediates Biosynthesis of a Second Essential Component of the Capsid. Journal of Bacteriology, 2004, 186, 1714-1719.	2.2	27

Pilar GarcÃa-Delgado

#	Article	IF	CITATIONS
91	Characterisation of technologically proficient wild Lactococcus lactis strains resistant to phage infection. International Journal of Food Microbiology, 2003, 86, 213-222.	4.7	35
92	The Dilemma of Phage Taxonomy Illustrated by Comparative Genomics of Sfi21-Like Siphoviridae in Lactic Acid Bacteria. Journal of Bacteriology, 2002, 184, 6026-6036.	2.2	108
93	Interaction of the Cro repressor with the lysis/lysogeny switch of the Lactobacillus casei temperate bacteriophage A2. Journal of General Virology, 2002, 83, 2891-2895.	2.9	15
94	A2 Cro, the Lysogenic Cycle Repressor, Specifically Binds to the Genetic Switch Region of Lactobacillus casei Bacteriophage A2. Virology, 1999, 262, 220-229.	2.4	28
95	Isolation and characterization of promoters from the Lactobacillus casei temperate bacteriophage A2. Canadian Journal of Microbiology, 1997, 43, 1063-1068.	1.7	6
96	Molecular analysis of the cos region of the Lactobacillus casei bacteriophage A2. Gene product 3, gp3, specifically binds to its downstream cos region. Molecular Microbiology, 1997, 23, 505-514.	2.5	33
97	Detection of fosfomycin resistance by the polymerase chain reaction and Western blotting. Journal of Antimicrobial Chemotherapy, 1994, 34, 955-963.	3.0	9
98	Purification and study of a bacterial glutathione S-transferase. FEBS Letters, 1990, 263, 77-79.	2.8	37
99	Bacteriophages of Lactic Acid Bacteria. , 0, , 111-123.		2