Priya Johari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7761622/publications.pdf Version: 2024-02-01

Ρριγλ Ιαμλρι

#	Article	IF	CITATIONS
1	Effect of cobalt doping on the enhanced energy storage performance of 2D vanadium diselenide: experimental and theoretical investigations. Nanotechnology, 2022, 33, 295703.	2.6	7
2	Magnesium polysulfide catholyte (MgSx): Synthesis, electrochemical and computational study for magnesium-sulfur battery application. Journal of Power Sources, 2021, 486, 229326.	7.8	21
3	Using Density Functional Theory to Correlate Charge Transport Properties with Gas Sensing by Organic Nanowires. ACS Applied Nano Materials, 2021, 4, 5972-5980.	5.0	5
4	Energy storage performance of 2D MoS ₂ and carbon nanotube heterojunctions in symmetric and asymmetric configuration. Nanotechnology, 2021, 32, 155403.	2.6	30
5	Metal-induced progressive alteration of conducting states in memristors for implementing an efficient analog memory: a DFT-supported experimental approach. Journal of Materials Chemistry C, 2021, 9, 3136-3144.	5.5	2
6	First-Principles Investigation of the 1T-HfTe ₂ Nanosheet for Selective Gas Sensing. ACS Applied Nano Materials, 2020, 3, 5160-5171.	5.0	27
-	Modulation of electronic and transport properties of bilayer heterostructures: <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>InSe</mml:mi><mml:mo>/</mml:mo><mml:ms< td=""><td>ub><mml:< td=""><td></td></mml:<></td></mml:ms<></mmi:math 	ub> <mml:< td=""><td></td></mml:<>	
7	and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>InSe</mml:mi><mml:mo>/</mml:mo><mml:mi DM as the sum to imped Devices Dev</mml:mi </mml:math 	3.2 h <td>25 ni></td>	25 ni>
8	Study of Higher Discharge Capacity, Phase Transition, and Relative Structural Stability in Li ₂ FeSiO ₄ Cathode upon Lithium Extraction Using an Experimental and Theoretical Approach and Full Cell Prototype Study. ACS Applied Energy Materials, 2019, 2, 6584-6598.	5.1	21
9	Synergistic Effect of Singly Charged Oxygen Vacancies and Ligand Field for Regulating Transport Properties of Resistive Switching Memories. Journal of Physical Chemistry C, 2019, 123, 26812-26822.	3.1	11
10	Control of Functionalities in GO: Effect of Bronsted Acids as Supported by Ab Initio Simulations and Experiments. ACS Omega, 2019, 4, 9407-9418.	3.5	10
11	One-Dimensional-Sn ₂ X ₃ (X = S, Se) as Promising Optoelectronic and Thermoelectronic Materials: A Comparison with Three-Dimensional-Sn ₂ X ₃ . ACS Applied Materials & amp; Interfaces, 2019, 11, 12733-12744.	8.0	22
12	Structure–Property Relationship in an Organic Semiconductor: Insights from Energy Frameworks, Charge Density Analysis, and Diode Devices. Crystal Growth and Design, 2019, 19, 3019-3029.	3.0	6
13	Influence of Pendant Group on Mobility of Organic Thin Film Transistor in Correlation with Reorganization Energy of Molecules. Advanced Functional Materials, 2019, 29, 1805878.	14.9	13
14	Enhanced and Faster Potassium Storage in Graphene with Respect to Graphite: A Comparative Study with Lithium Storage. ACS Nano, 2019, 13, 2190-2204.	14.6	27
15	Strategical Designing of Donor–Acceptor–Donor Based Organic Molecules for Tuning Their Linear Optical Properties. Journal of Physical Chemistry A, 2018, 122, 492-504.	2.5	17
16	Kinetics of thermally activated triplet fusion as a function of polymer chain packing in boosting the efficiency of organic light emitting diodes. Npj Flexible Electronics, 2018, 2, .	10.7	17
17	Understanding the Li-storage in few layers graphene with respect to bulk graphite: experimental, analytical and computational study. Journal of Materials Chemistry A, 2017, 5, 8662-8679.	10.3	70
18	Understanding the Lithiation of the Sn Anode for High-Performance Li-Ion Batteries with Exploration of Novel Li–Sn Compounds at Ambient and Moderately High Pressure. ACS Applied Materials & Interfaces, 2017, 9, 40197-40206.	8.0	25

Priya Johari

#	Article	IF	CITATIONS
19	Impact of Cl Doping on Electrochemical Performance in Orthosilicate (Li ₂ FeSiO ₄): A Density Functional Theory Supported Experimental Approach. ACS Applied Materials & Interfaces, 2017, 9, 26885-26896.	8.0	37
20	Rationally designed donor–acceptor scheme based molecules for applications in opto-electronic devices. Physical Chemistry Chemical Physics, 2016, 18, 9133-9147.	2.8	17
21	Dependence of the Structure and Electronic Properties of D–A–D Based Molecules on the D/A Ratio and the Strength of the Acceptor Moiety. Journal of Physical Chemistry C, 2015, 119, 14890-14899.	3.1	12
22	An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide. Nanoscale, 2014, 6, 10243-10254.	5.6	103
23	Li Segregation Induces Structure and Strength Changes at the Amorphous Si/Cu Interface. Nano Letters, 2013, 13, 4759-4768.	9.1	75
24	Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains. ACS Nano, 2012, 6, 5449-5456.	14.6	809
25	The Mixing Mechanism during Lithiation of Si Negative Electrode in Li-Ion Batteries: An Ab Initio Molecular Dynamics Study. Nano Letters, 2011, 11, 5494-5500.	9.1	155
26	Modulating Optical Properties of Graphene Oxide: Role of Prominent Functional Groups. ACS Nano, 2011, 5, 7640-7647.	14.6	216
27	Tunable Dielectric Properties of Transition Metal Dichalcogenides. ACS Nano, 2011, 5, 5903-5908.	14.6	129
28	Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study. Journal of Power Sources, 2010, 195, 6825-6830.	7.8	367
29	Spatially-Resolved Structure and Electronic Properties of Graphene on Polycrystalline Ni. ACS Nano, 2010 4, 2073-2077	14.6	52