Giuseppe Averta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7761236/publications.pdf

Version: 2024-02-01

33 446 11 18 papers citations h-index g-index 366

44 44 366
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Learning From Humans How to Grasp: A Data-Driven Architecture for Autonomous Grasping With Anthropomorphic Soft Hands. IEEE Robotics and Automation Letters, 2019, 4, 1533-1540.	3.3	65
2	Postural Hand Synergies during Environmental Constraint Exploitation. Frontiers in Neurorobotics, 2017, 11, 41.	1.6	56
3	Unvealing the Principal Modes of Human Upper Limb Movements through Functional Analysis. Frontiers in Robotics and Al, 2017, 4, .	2.0	38
4	Design and Validation of the <i>Readable</i> Device: A Single-Cell Electromagnetic Refreshable Braille Display. IEEE Transactions on Haptics, 2020, 13, 239-245.	1.8	27
5	Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 63.	2.4	26
6	Incrementality and Hierarchies in the Enrollment of Multiple Synergies for Grasp Planning. IEEE Robotics and Automation Letters, 2018, 3, 2686-2693.	3.3	23
7	Efficient Walking Gait Generation via Principal Component Representation of Optimal Trajectories: Application to a Planar Biped Robot With Elastic Joints. IEEE Robotics and Automation Letters, 2018, 3, 2299-2306.	3.3	21
8	On the Time-Invariance Properties of Upper Limb Synergies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1397-1406.	2.7	21
9	Predicting Object-Mediated Gestures From Brain Activity: An EEG Study on Gender Differences. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 411-418.	2.7	19
10	Design of an under-actuated wrist based on adaptive synergies. , 2017, , .		18
10	Design of an under-actuated wrist based on adaptive synergies. , 2017, , . Touch-Based Grasp Primitives for Soft Hands: Applications to Human-to-Robot Handover Tasks and Beyond. , 2018, , .		18
	Touch-Based Grasp Primitives for Soft Hands: Applications to Human-to-Robot Handover Tasks and	3.3	
11	Touch-Based Grasp Primitives for Soft Hands: Applications to Human-to-Robot Handover Tasks and Beyond., 2018,,. U-Limb: A multi-modal, multi-center database on arm motion control in healthy and post-stroke	3.3	18
11 12	Touch-Based Grasp Primitives for Soft Hands: Applications to Human-to-Robot Handover Tasks and Beyond., 2018,,. U-Limb: A multi-modal, multi-center database on arm motion control in healthy and post-stroke conditions. GigaScience, 2021, 10,. A functional analysis-based approach to quantify upper limb impairment level in chronic stroke	3.3	18
11 12 13	Touch-Based Grasp Primitives for Soft Hands: Applications to Human-to-Robot Handover Tasks and Beyond., 2018,,. U-Limb: A multi-modal, multi-center database on arm motion control in healthy and post-stroke conditions. GigaScience, 2021, 10,. A functional analysis-based approach to quantify upper limb impairment level in chronic stroke patients: a pilot study., 2019, 2019, 4198-4204. Toward brain–heart computer interfaces: a study on the classification of upper limb movements using		18 18 16
11 12 13	Touch-Based Grasp Primitives for Soft Hands: Applications to Human-to-Robot Handover Tasks and Beyond., 2018,,. U-Limb: A multi-modal, multi-center database on arm motion control in healthy and post-stroke conditions. GigaScience, 2021, 10,. A functional analysis-based approach to quantify upper limb impairment level in chronic stroke patients: a pilot study., 2019, 2019, 4198-4204. Toward brain–heart computer interfaces: a study on the classification of upper limb movements using multisystem directional estimates. Journal of Neural Engineering, 2021, 18, 046002. A technical framework for human-like motion generation with autonomous anthropomorphic		18 18 16
11 12 13 14	Touch-Based Grasp Primitives for Soft Hands: Applications to Human-to-Robot Handover Tasks and Beyond., 2018,,. U-Limb: A multi-modal, multi-center database on arm motion control in healthy and post-stroke conditions. GigaScience, 2021, 10,. A functional analysis-based approach to quantify upper limb impairment level in chronic stroke patients: a pilot study., 2019, 2019, 4198-4204. Toward brainâ€"heart computer interfaces: a study on the classification of upper limb movements using multisystem directional estimates. Journal of Neural Engineering, 2021, 18, 046002. A technical framework for human-like motion generation with autonomous anthropomorphic redundant manipulators., 2020,,.		18 18 16 12 11

#	Article	IF	CITATIONS
19	To grasp or not to grasp: an end-to-end deep-learning approach for predicting grasping failures in soft hands. , 2020, , .		7
20	From humans to robots: The role of cutaneous impairment in human environmental constraint exploitation to inform the design of robotic hands. , 2017, , .		5
21	Learning to Prevent Grasp Failure with Soft Hands: From Online Prediction to Dualâ€Arm Grasp Recovery. Advanced Intelligent Systems, 2022, 4, 2100146.	3.3	5
22	A novel mechatronic system for evaluating elbow muscular spasticity relying on Tonic Stretch Reflex Threshold estimation., 2020, 2020, 3839-3843.		4
23	EEG Processing to Discriminate Transitive-Intransitive Motor Imagery Tasks: Preliminary Evidences using Support Vector Machines., 2018, 2018, 231-234.		3
24	A low-dimensional representation of arm movements and hand grip forces in post-stroke individuals. Scientific Reports, 2022, 12, 7601.	1.6	3
25	Learning With Few Examples the Semantic Description of Novel Human-Inspired Grasp Strategies From RGB Data. IEEE Robotics and Automation Letters, 2022, 7, 2573-2580.	3.3	2
26	Modeling Previous Trial Effect in Human Manipulation through Iterative Learning Control. Advanced Intelligent Systems, 2020, 2, 1900074.	3.3	1
27	Learning to Prevent Grasp Failure withÂSoft Hands: From On-Line Prediction toÂDual-Arm Grasp Recovery. Springer Tracts in Advanced Robotics, 2022, , 221-235.	0.3	1
28	Learning from Humans How to Grasp: A Reactive-Based Approach. Springer Tracts in Advanced Robotics, 2022, , 185-202.	0.3	1
29	Modeling Human Motor Skills to Enhance Robots' Physical Interaction. Springer Proceedings in Advanced Robotics, 2021, , 116-126.	0.9	0
30	Functional Analysis of Upper-Limb Movements in the Cartesian Domain. Biosystems and Biorobotics, 2022, , 339-343.	0.2	0
31	A User-Centered Approach to Artificial Sensory Substitution for Blind People Assistance. Biosystems and Biorobotics, 2022, , 599-603.	0.2	0
32	A Synergistic Behavior Underpins Human Hand Grasping Force Control During Environmental Constraint Exploitation. Biosystems and Biorobotics, 2019, , 67-71.	0.2	0
33	Kineto-Dynamic Modeling of Human Upper Limb for Robotic Manipulators and Assistive Applications. , 2020, , 23-51.		O