Patrice Fort

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7761010/publications.pdf

Version: 2024-02-01

		43973	49773
108	7,964	48	87
papers	7,964 citations	h-index	g-index
111	111	111	4396
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Is REM sleep a paradoxical state?: Different neurons are activated in the cingulate cortices and the claustrum during wakefulness and paradoxical sleep hypersomnia. Biochemical Pharmacology, 2021, 191, 114514.	2.0	14
2	Granule cells in the infrapyramidal blade of the dentate gyrus are activated during paradoxical (REM) sleep hypersomnia but not during wakefulness: a study using TRAP mice. Sleep, 2021, 44, .	0.6	3
3	Targeted recombination in active populations as a new mouse genetic model to study sleepâ€active neuronal populations: Demonstration that Lhx6+ neurons in the ventral zona incerta are activated during paradoxical sleep hypersomnia. Journal of Sleep Research, 2020, 29, e12976.	1.7	8
4	Defining and measuring paradoxical (REM) sleep in animal models of sleep disorders. Current Opinion in Physiology, 2020, 15, 203-209.	0.9	3
5	Sleep–wake physiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 160, 359-370.	1.0	32
6	Neuroanatomical and Neurochemical Systems Involved in Paradoxical Sleep (PS) Generation. Handbook of Behavioral Neuroscience, 2019, 30, 239-248.	0.7	0
7	Inhibitory Mechanisms in the Dorsal Raphe Nucleus and Locus Coeruleus During Sleep. , 2019, , 195-211.		4
8	Neuroanatomical and Neurochemical Bases of Vigilance States. Handbook of Experimental Pharmacology, 2018, 253, 35-58.	0.9	19
9	Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder. Nature Communications, 2018, 9, 504.	5.8	85
10	Nucleus Accumbens, a new sleep-regulating area through the integration of motivational stimuli. Acta Pharmacologica Sinica, 2018, 39, 165-166.	2.8	12
11	Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep, 2018, 41, .	0.6	42
12	A Particular Medullary-Spinal Inhibitory Pathway is Recruited for the Expression of Muscle Atonia During REM Sleep. Journal of Experimental Neuroscience, 2018, 12, 117906951880874.	2.3	8
13	Not a single but multiple populations of GABAergic neurons control sleep. Sleep Medicine Reviews, 2017, 32, 85-94.	3.8	87
14	The C1q complement family of synaptic organizers: not just complementary. Current Opinion in Neurobiology, 2017, 45, 9-15.	2.0	70
15	Selective activation of a few limbic structures during paradoxical (REM) sleep by the claustrum and the supramammillary nucleus: evidence and function. Current Opinion in Neurobiology, 2017, 44, 59-64.	2.0	39
16	Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder. Brain, 2017, 140, 414-428.	3.7	118
17	Differential origin of the activation of dorsal and ventral dentate gyrus granule cells during paradoxical (REM) sleep in the rat. Brain Structure and Function, 2017, 222, 1495-1507.	1.2	14
18	Sleep architecture and homeostasis in mice with partial ablation of melanin-concentrating hormone neurons. Behavioural Brain Research, 2016, 298, 100-110.	1.2	13

#	Article	IF	CITATIONS
19	Paradoxical (REM) sleep deprivation in mice using the smallâ€platformsâ€overâ€water method: polysomnographic analyses and melaninâ€concentrating hormone and hypocretin/orexin neuronal activation before, during and after deprivation. Journal of Sleep Research, 2015, 24, 309-319.	1.7	38
20	The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Science Advances, 2015, 1, e1400177.	4.7	115
21	Glucose Induces Slow-Wave Sleep by Exciting the Sleep-Promoting Neurons in the Ventrolateral Preoptic Nucleus: A New Link between Sleep and Metabolism. Journal of Neuroscience, 2015, 35, 9900-9911.	1.7	59
22	Genetic deletion of melaninâ€concentrating hormone neurons impairs hippocampal shortâ€ŧerm synaptic plasticity and hippocampalâ€dependent forms of shortâ€ŧerm memory. Hippocampus, 2015, 25, 1361-1373.	0.9	20
23	Impaired Sleep and Alertness in Parkinson's Disease: "What Did We Learn from Animal Models?― , 2015, 35-49.	,	О
24	Animal models of REM dysfunctions: what they tell us about the cause of narcolepsy and RBD?. Archives Italiennes De Biologie, 2015, 152, 118-28.	0.1	6
25	The Inhibition of the Dorsal Paragigantocellular Reticular Nucleus Induces Waking and the Activation of All Adrenergic and Noradrenergic Neurons: A Combined Pharmacological and Functional Neuroanatomical Study. PLoS ONE, 2014, 9, e96851.	1.1	18
26	Networks of Normal and Disordered Sleep. , 2014, , 299-310.		1
27	New aspects in the pathophysiology of rapid eye movement sleep behavior disorder: the potential role of glutamate, gamma-aminobutyric acid, and glycine. Sleep Medicine, 2013, 14, 714-718.	0.8	7 5
28	Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control. Current Opinion in Neurobiology, 2013, 23, 786-792.	2.0	99
29	Le sommeil paradoxalÂ: son contrÃ1e par l'hypothalamus. Médecine Du Sommeil, 2013, 10, 146-154.	0.3	O
30	Brainstem structures involved in rapid eye movement sleep behavior disorder. Sleep and Biological Rhythms, 2013, 11, 9-14.	0.5	1
31	Role of MCH Neurons in Paradoxical (REM) Sleep Control. Sleep, 2013, 36, 1775-1776.	0.6	23
32	The Lateral Hypothalamic Area Controls Paradoxical (REM) Sleep by Means of Descending Projections to Brainstem GABAergic Neurons. Journal of Neuroscience, 2012, 32, 16763-16774.	1.7	85
33	Tuberal Hypothalamic Neurons Secreting the Satiety Molecule Nesfatin-1 Are Critically Involved in Paradoxical (REM) Sleep Homeostasis. PLoS ONE, 2012, 7, e52525.	1.1	42
34	Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Archiv European Journal of Physiology, 2012, 463, 43-52.	1.3	107
35	The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Medicine Reviews, 2011, 15, 153-163.	3.8	230
36	Evidence that Neurons of the Sublaterodorsal Tegmental Nucleus Triggering Paradoxical (REM) Sleep Are Glutamatergic. Sleep, 2011, 34, 419-423.	0.6	135

#	Article	IF	Citations
37	What are the mechanisms activating the sleep-active neurons located in the preoptic area?. Sleep and Biological Rhythms, 2011, 9, 59-64.	0.5	3
38	Neurochemistry of sleep. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 98, 173-190.	1.0	13
39	The Neurobiology of Sleep–Wake Systems: An Overview. , 2011, , 107-119.		O
40	Dopaminergic neurons expressing Fos during waking and paradoxical sleep in the rat. Journal of Chemical Neuroanatomy, 2010, 39, 262-271.	1.0	33
41	Alternating vigilance states: new insights regarding neuronal networks and mechanisms. European Journal of Neuroscience, 2009, 29, 1741-1753.	1.2	132
42	Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides, 2009, 30, 2052-2059.	1.2	68
43	Noradrenergic neurons expressing Fos during waking and paradoxical sleep deprivation in the rat. Journal of Chemical Neuroanatomy, 2009, 37, 149-157.	1.0	41
44	Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome. Experimental Neurology, 2009, 220, 341-348.	2.0	35
45	Localization of the Brainstem GABAergic Neurons Controlling Paradoxical (REM) Sleep. PLoS ONE, 2009, 4, e4272.	1.1	207
46	Sleep architecture of the melaninâ€concentrating hormone receptor 1â€knockout mice. European Journal of Neuroscience, 2008, 27, 1793-1800.	1.2	78
47	Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience, 2008, 152, 849-857.	1.1	70
48	The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience, 2008, 155, 174-181.	1.1	111
49	Gamma-aminobutyric acid and the regulation of paradoxical, or rapid eye movement, sleep. , 2008, , 85-108.		1
50	Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons., 2008,, 237-250.		1
51	Oscillatory and Intrinsic Membrane Properties of Guinea Pig Nucleus Prepositus Hypoglossi Neurons In Vitro. Journal of Neurophysiology, 2006, 96, 175-196.	0.9	36
52	Paradoxical (REM) sleep genesis: The switch from an aminergic–cholinergic to a GABAergic–glutamatergic hypothesis. Journal of Physiology (Paris), 2006, 100, 271-283.	2.1	176
53	Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. Journal of Comparative Neurology, 2006, 495, 573-586.	0.9	102
54	GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep???waking cycle. NeuroReport, 2005, 16, 1069-1073.	0.6	43

#	Article	IF	Citations
55	Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. European Journal of Neuroscience, 2005, 21, 2488-2504.	1.2	115
56	Sleep disturbances in Ube3a maternal-deficient mice modeling Angelman syndrome. Neurobiology of Disease, 2005, 20, 471-478.	2.1	79
57	Paradoxical Sleep in Mice Lacking M ₃ and M ₂ /M ₄ Muscarinic Receptors. Neuropsychobiology, 2005, 52, 140-146.	0.9	36
58	The sarcoglycan–sarcospan complex localization in mouse retina is independent from dystrophins. Neuroscience Research, 2005, 53, 25-33.	1.0	16
59	The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience, 2005, 134, 1377-1390.	1.1	180
60	In vitro study of the sleep promoting neurons from the ventrolateral preoptic nucleus. Sleep and Biological Rhythms, 2004, 2, S23-S24.	0.5	0
61	Effect of the Wake-Promoting Agent Modafinil on Sleep-Promoting Neurons from the Ventrolateral Preoptic Nucleus: an In Vitro Pharmacologic Study. Sleep, 2004, , .	0.6	38
62	In Vitro Identification of the Presumed Sleep-Promoting Neurons of the Ventrolateral Preoptic Nucleus (VLPO)., 2004,, 41-62.		5
63	Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus: an in vitro pharmacologic study. Sleep, 2004, 27, 19-25.	0.6	119
64	Brainstem structures responsible for paradoxical sleep onset and maintenance. Archives Italiennes De Biologie, 2004, 142, 397-411.	0.1	20
65	Posterior hypothalamus and regulation of vigilance states. Archives Italiennes De Biologie, 2004, 142, 487-500.	0.1	3
66	A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neuroscience, 2003, 4, 19.	0.8	379
67	Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. European Journal of Neuroscience, 2003, 18, 1627-1639.	1.2	187
68	Effect of chronic treatment with milnacipran on sleep architecture in rats compared with paroxetine and imipramine. Pharmacology Biochemistry and Behavior, 2002, 73, 557-563.	1.3	31
69	The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. European Journal of Neuroscience, 2002, 16, 1959-1973.	1.2	302
70	Single-unit and polygraphic recordings associated with systemic or local pharmacology: A multi-purpose stereotaxic approach for the awake, anaesthetic-free, and head-restrained rat. Journal of Neuroscience Research, 2000, 61, 88-100.	1.3	24
71	Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat. European Journal of Neuroscience, 2000, 12, 3361-3374.	1.2	94
72	Identification of sleep-promoting neurons in vitro. Nature, 2000, 404, 992-995.	13.7	448

#	Article	IF	CITATIONS
73	Role of the Lateral Preoptic Area in Sleep-Related Erectile Mechanisms and Sleep Generation in the Rat. Journal of Neuroscience, 2000, 20, 6640-6647.	1.7	85
74	Role and Origin of the GABAergic Innervation of Dorsal Raphe Serotonergic Neurons. Journal of Neuroscience, 2000, 20, 4217-4225.	1.7	274
75	Origins of the glycinergic inputs to the rat locus coeruleus and dorsal raphe nuclei: a study combining retrograde tracing with glycine immunohistochemistry. European Journal of Neuroscience, 1999, 11, 1058-1066.	1.2	29
76	Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep. European Journal of Neuroscience, 1998, 10, 964-970.	1.2	176
77	GABAergic input to cholinergic nucleus basalis neurons. Neuroscience, 1998, 86, 937-947.	1.1	31
78	Pharmacological characterization and differentiation of non-cholinergic nucleus basalis neurons in vitro. NeuroReport, 1998, 9, 61-65.	0.6	36
79	Inhibitory Mechanisms in the Dorsal Raphe Nucleus and Locus Coeruleus During Sleep. , 1998, , .		1
80	Modulation of cholinergic nucleus basalis neurons by acetylcholine and N-methyl-d-aspartate. Neuroscience, 1997, 81, 47-55.	1.1	51
81	Distribution of glycine-immunoreactive cell bodies and fibers in the rat brain. Neuroscience, 1996, 75, 737-755.	1.1	185
82	Rhythmic firing of medial septum non-cholinergic neurons. Neuroscience, 1996, 75, 671-675.	1.1	59
83	Effect of strychnine on rat locus coeruleus neurones during sleep and wakefulness. NeuroReport, 1996, 8, 351-355.	0.6	40
84	Origin of the glycinergic innervation of the rat trigeminal motor nucleus. NeuroReport, 1996, 7, 3081-3086.	0.6	46
85	Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus., 1996, 364, 402-413.		118
86	Differential Oscillatory Properties of Cholinergic and Non-cholinergic Nucleus Basalis Neurons in Guinea Pig Brain Slice. European Journal of Neuroscience, 1996, 8, 169-182.	1.2	87
87	Origin of the dopaminergic innervation of the rat dorsal raphe nucleus. NeuroReport, 1995, 6, 2527-2531.	0.6	64
88	Rhythmical bursts induced by NMDA in guineaâ€pig cholinergic nucleus basalis neurones in vitro Journal of Physiology, 1995, 487, 623-638.	1.3	42
89	Noradrenergic Modulation of Cholinergic Nucleus Basalis Neurons Demonstrated byin vitroPharmacological and Immunohistochemical Evidence in the Guinea-pig Brain. European Journal of Neuroscience, 1995, 7, 1502-1511.	1.2	109
90	Cholinergic nucleus basalis neurons are excited by histamine in vitro. Neuroscience, 1995, 69, 495-506.	1.1	205

#	Article	IF	CITATIONS
91	Afferents to the nucleus reticularis parvicellularis of the cat medulla oblongata: A tract-tracing study with cholera toxin B subunit. Journal of Comparative Neurology, 1994, 342, 603-618.	0.9	33
92	Histaminergic system in the cat hypothalamus with reference to type B monoamine oxidase. Journal of Comparative Neurology, 1993, 330, 405-420.	0.9	124
93	Pharmacological and Immunohistochemical Evidence for Serotonergic Modulation of Cholinergic Nucleus Basalis Neurons. European Journal of Neuroscience, 1993, 5, 541-547.	1.2	118
94	Glycine-immunoreactive neurones in the cat brain stem reticular formation. NeuroReport, 1993, 4, 1123-6.	0.6	47
95	Role of catecholamines in the modafinil and amphetamine induced wakefulness, a comparative pharmacological study in the cat. Brain Research, 1992, 591, 319-326.	1.1	202
96	Immunohistochemical evidence for the presence of type B monoamine oxidase in histamine-containing neurons in the posterior hypothalamus of cats. Neuroscience Letters, 1991, 128, 61-65.	1.0	14
97	Anatomical and electrophysiological evidence for a glycinergic inhibitory innervation of the rat locus coeruleus. Neuroscience Letters, 1991, 128, 33-36.	1.0	33
98	Nuclei of origin of monoaminergic, peptidergic, and cholinergic afferents to the cat trigeminal motor nucleus: A double-labeling study with cholera-toxin as a retrograde tracer. Journal of Comparative Neurology, 1990, 301, 262-275.	0.9	96
99	Lower brainstem afferents to the cat posterior hypothalamus: A double-labeling study. Brain Research Bulletin, 1990, 24, 437-455.	1.4	78
100	Catecholaminergic afferents to the cat median eminence as determined by double-labelling methods. Neuroscience, 1990, 36, 491-505.	1.1	9
101	Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Research, 1990, 534, 209-224.	1.1	295
102	Monoaminergic, peptidergic, and cholinergic afferents to the cat facial nucleus as evidenced by a double immunostaining method with unconjugated cholera toxin as a retrograde tracer. Journal of Comparative Neurology, 1989, 283, 285-302.	0.9	82
103	Forebrain afferents to the cat posterior hypothalamus: A double labeling study. Brain Research Bulletin, 1989, 23, 83-104.	1.4	38
104	Adrenergic input from medullary ventrolateral C1 cells to the nucleus raphe pallidus of the cat, as demonstrated by a double immunostaining technique. Neuroscience Letters, 1989, 106, 29-35.	1.0	15
105	The Nuclei of origin of monoaminergic, peptidergic, and cholinergic afferents to the cat nucleus reticularis magnocellularis: A double-labeling study with cholera toxin as a retrograde tracer. Journal of Comparative Neurology, 1988, 277, 1-20.	0.9	199
106	Peptidergic hypothalamic afferents to the cat nucleus raphe pallidus as revealed by a double immunostaining technique using unconjugated cholera toxin as a retrograde tracer. Brain Research, 1987, 402, 339-345.	1.1	92
107	Glutamatergic regulation of REM sleep. , 0, , 214-222.		0
108	Neuroanatomy and physiology of sleep and wakefulness., 0,, 8-14.		O