Anna M Ã-sterholm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/776097/publications.pdf

Version: 2024-02-01

39 papers 1,803 citations

304743 22 h-index 302126 39 g-index

43 all docs 43
docs citations

43 times ranked

1971 citing authors

#	Article	IF	CITATIONS
1	Conquering residual light absorption in the transmissive states of organic electrochromic materials. Materials Horizons, 2022, 9, 252-260.	12.2	21
2	Enhancement of Photostability through Side Chain Tuning in Dioxythiophene-Based Conjugated Polymers. Chemistry of Materials, 2022, 34, 1041-1051.	6.7	6
3	Probing Comonomer Selection Effects on Dioxythiophene-Based Aqueous-Compatible Polymers for Redox Applications. Chemistry of Materials, 2022, 34, 4633-4645.	6.7	20
4	Cost-Effective, Flexible, and Colorful Dynamic Displays: Removing Underlying Conducting Layers from Polymer-Based Electrochromic Devices. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16732-16743.	8.0	29
5	Charge-Transfer Intermediates in the Electrochemical Doping Mechanism of Conjugated Polymers. Journal of the American Chemical Society, 2021, 143, 294-308.	13.7	28
6	Structural effects on the charge transport properties of chemically and electrochemically doped dioxythiophene polymers. Journal of Materials Chemistry C, 2020, 8, 683-693.	5 . 5	22
7	Integrating Solution-Processable Conducting Polymers in Carbon Fiber Paper: Scalable 3D Electrodes for Redox-Based Supercapacitors. ACS Applied Polymer Materials, 2020, 2, 3234-3242.	4.4	8
8	Electrochromic selective filtering of chronodisruptive visible wavelengths. PLoS ONE, 2020, 15, e0241900.	2. 5	1
9	Paperâ€Based Electrochromic Devices Enabled by Nanocelluloseâ€Coated Substrates. Advanced Functional Materials, 2019, 29, 1903487.	14.9	81
10	Disentangling Redox Properties and Capacitance in Solution-Processed Conjugated Polymers. Chemistry of Materials, 2019, 31, 2971-2982.	6.7	50
11	Electrochromism in Conjugated Polymers – Strategies for Complete and Straightforward Color Control. , 2019, , 201-248.		3
12	Transparent Wood Smart Windows: Polymer Electrochromic Devices Based on Poly(3,4â€Ethylenedioxythiophene):Poly(Styrene Sulfonate) Electrodes. ChemSusChem, 2018, 11, 854-863.	6.8	115
13	Chemical Oxidation of Polymer Electrodes for Redox Active Devices: Stabilization through Interfacial Interactions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 970-978.	8.0	23
14	Exploring unbalanced electrode configurations for electrochromic devices. Journal of Materials Chemistry C, 2018, 6, 393-400.	5.5	22
15	Balancing Charge Storage and Mobility in an Oligo(Ether) Functionalized Dioxythiophene Copolymer for Organic―and Aqueous―Based Electrochemical Devices and Transistors. Advanced Materials, 2018, 30, e1804647.	21.0	119
16	All Polymer Solution Processed Electrochromic Devices: A Future without Indium Tin Oxide?. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31568-31579.	8.0	54
17	Conjugated Polymer Blends for High Contrast Blackâ€toâ€Transmissive Electrochromism. Advanced Optical Materials, 2018, 6, 1800594.	7.3	73
18	Electrochromic Polymers Processed from Environmentally Benign Solvents. Chemistry of Materials, 2018, 30, 5161-5168.	6.7	32

#	Article	IF	CITATIONS
19	Conjugated Polyelectrolytes as Water Processable Precursors to Aqueous Compatible Redox Active Polymers for Diverse Applications: Electrochromism, Charge Storage, and Biocompatible Organic Electronics. Chemistry of Materials, 2017, 29, 4385-4392.	6.7	78
20	Flexible, aqueous-electrolyte supercapacitors based on water-processable dioxythiophene polymer/carbon nanotube textile electrodes. Journal of Materials Chemistry A, 2017, 5, 23887-23897.	10.3	40
21	Full Color Control and Highâ€Resolution Patterning from Inkjet Printable Cyan/Magenta/Yellow Coloredâ€toâ€Colorless Electrochromic Polymer Inks. Advanced Materials Technologies, 2016, 1, 1600063.	5.8	35
22	Solution Processed PEDOT Analogues in Electrochemical Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13492-13498.	8.0	65
23	Tuning Color, Contrast, and Redox Stability in High Gap Cathodically Coloring Electrochromic Polymers. Macromolecules, 2016, 49, 8498-8507.	4.8	58
24	Designing a Soluble PEDOT Analogue without Surfactants or Dispersants. Macromolecules, 2016, 49, 2106-2111.	4.8	74
25	Four Shades of Brown: Tuning of Electrochromic Polymer Blends Toward High-Contrast Eyewear. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1413-1421.	8.0	197
26	Process controlled performance for soluble electrochromic polymers. Solar Energy Materials and Solar Cells, 2015, 140, 54-60.	6.2	58
27	Out of sight but not out of mind: the role of counter electrodes in polymer-based solid-state electrochromic devices. Journal of Materials Chemistry C, 2015, 3, 9715-9725.	5.5	72
28	Understanding the effects of electrochemical parameters on the areal capacitance of electroactive polymers. Journal of Materials Chemistry A, 2014, 2, 7509-7516.	10.3	17
29	Enhanced electron transfer in composite films of reduced graphene oxide and poly(N-methylaniline). Carbon, 2013, 63, 588-592.	10.3	6
30	Optimization of PEDOT Films in Ionic Liquid Supercapacitors: Demonstration As a Power Source for Polymer Electrochromic Devices. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13432-13440.	8.0	114
31	Electrochemical reduction of graphene oxide in electrically conducting poly(3,4-ethylenedioxythiophene) composite films. Electrochimica Acta, 2013, 110, 428-436.	5.2	44
32	Electrochemical incorporation of graphene oxide into conducting polymer films. Electrochimica Acta, 2012, 83, 463-470.	5.2	119
33	Electrochemical and Spectroelectrochemical Study of Polyazulene/BBL-PEO Donor–Acceptor Composite Layers. Journal of Physical Chemistry C, 2012, 116, 23793-23802.	3.1	13
34	Studying electronic transport in polyazulene–ionic liquid systems using infrared vibrational spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 11254.	2.8	12
35	Characterization of Waterâ€Dispersible nâ€Type Poly(benzimidazobenzophenanthroline) Derivatives. Macromolecular Chemistry and Physics, 2011, 212, 1567-1574.	2.2	7
36	Ionic liquids in electrosynthesis and characterization of a polyazulene-fullerene composite. Electrochimica Acta, 2011, 56, 1490-1497.	5.2	13

#	Article	IF	CITATIONS
37	Spectroelectrochemical study of the redox reactions of polyazulene on aluminum substrates. Journal of Electroanalytical Chemistry, 2008, 613, 160-170.	3.8	17
38	The Nature of the Charge Carriers in Polyazulene as Studied by in Situ Electron Spin Resonanceâ^'UVâ^'Visibleâ^'Near-Infrared Spectroscopy. Journal of Physical Chemistry B, 2008, 112, 14149-14157.	2.6	27
39	In situ Resonance Raman Spectroscopy of Polyazulene on Aluminum. Journal of Physical Chemistry B, 2008, 112, 6331-6337.	2.6	16