Lee E Gunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7760960/publications.pdf

Version: 2024-02-01

172207 182168 8,241 52 29 51 h-index citations g-index papers 53 53 53 9480 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Overexpression of a <i>Prefoldin \hat{l}^2</i> subunit gene reduces biomass recalcitrance in the bioenergy crop <i>Populus</i> . Plant Biotechnology Journal, 2020, 18, 859-871.	4.1	17
2	Mediation of plant–mycorrhizal interaction by a lectin receptor-like kinase. Nature Plants, 2019, 5, 676-680.	4.7	42
3	Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop <i>Populus</i> . Sustainable Energy and Fuels, 2019, 3, 195-207.	2.5	27
4	The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. Annals of Botany, 2019, 124, 617-626.	1.4	45
5	PdWND3A, a wood-associated NAC domain-containing protein, affects lignin biosynthesis and composition in Populus. BMC Plant Biology, 2019, 19, 486.	1.6	28
6	Abiotic Stresses Shift Belowground $\langle i \rangle$ Populus $\langle i \rangle$ -Associated Bacteria Toward a Core Stress Microbiome. MSystems, 2018, 3, .	1.7	89
7	The <i>Physcomitrella patens</i> chromosomeâ€scale assembly reveals moss genome structure and evolution. Plant Journal, 2018, 93, 515-533.	2.8	406
8	Phytobiome and Transcriptional Adaptation of <i>Populus deltoides</i> to Acute Progressive Drought and Cyclic Drought. Phytobiomes Journal, 2018, 2, 249-260.	1.4	23
9	A New Calmodulin-Binding Protein Expresses in the Context of Secondary Cell Wall Biosynthesis and Impacts Biomass Properties in Populus. Frontiers in Plant Science, 2018, 9, 1669.	1.7	31
10	Defining the genetic components of callus formation: A GWAS approach. PLoS ONE, 2018, 13, e0202519.	1.1	27
11	<scp>Genomeâ€wide association studies</scp> and expressionâ€based quantitative trait loci analyses reveal roles of <scp>HCT</scp> 2 in caffeoylquinic acid biosynthesis and its regulation by defenseâ€responsive transcription factors in <i>Populus</i> . New Phytologist, 2018, 220, 502-516.	3.5	112
12	A 5-Enolpyruvylshikimate 3-Phosphate Synthase Functions as a Transcriptional Repressor in <i>Populus </i> . Plant Cell, 2018, 30, 1645-1660.	3.1	56
13	Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus) Tj ETQq1 1 0.78	84314 rgB ⁻	T /Qverlock 1
14	Overexpression of a Domain of Unknown Function 266-containing protein results in high cellulose content, reduced recalcitrance, and enhanced plant growth in the bioenergy crop Populus. Biotechnology for Biofuels, 2017, 10, 74.	6.2	22
15	Correlating laser-induced breakdown spectroscopy with neutron activation analysis to determine the elemental concentration in the ionome of the Populus trichocarpa leaf. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 138, 46-53.	1.5	11
16	Overexpression of a Domain of Unknown Function 231-containing protein increases O-xylan acetylation and cellulose biosynthesis in Populus. Biotechnology for Biofuels, 2017, 10, 311.	6.2	26
17	Agronomic performance of Populus deltoides trees engineered for biofuel production. Biotechnology for Biofuels, 2017, 10, 253.	6.2	22
18	Two Poplar-Associated Bacterial Isolates Induce Additive Favorable Responses in a Constructed Plant-Microbiome System. Frontiers in Plant Science, 2016, 7, 497.	1.7	113

#	Article	IF	CITATIONS
19	Knockdown of a laccase in <i>Populus deltoides</i> confers altered cell wall chemistry and increased sugar release. Plant Biotechnology Journal, 2016, 14, 2010-2020.	4.1	64
20	Scaling nitrogen and carbon interactions: what are the consequences of biological buffering?. Ecology and Evolution, 2015, 5, 2839-2850.	0.8	4
21	High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genomics, 2015, 16, 24.	1.2	106
22	Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nature Genetics, 2014, 46, 1089-1096.	9.4	330
23	A 34K <scp>SNP</scp> genotyping array for <i>Populus trichocarpa</i> : Design, application to the study of natural populations and transferability to other <i>Populus</i> species. Molecular Ecology Resources, 2013, 13, 306-323.	2.2	92
24	A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees. PLoS ONE, 2013, 8, e76382.	1.1	315
25	Genome Anchored QTLs for Biomass Productivity in Hybrid Populus Grown under Contrasting Environments. PLoS ONE, 2013, 8, e54468.	1.1	20
26	Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree <i>Populus trichocarpa</i> New Phytologist, 2012, 196, 713-725.	3.5	173
27	Initial characterization of shade avoidance response suggests functional diversity between <i>Populus</i> phytochrome B genes. New Phytologist, 2012, 196, 726-737.	3.5	25
28	Comparative physiology and transcriptional networks underlying the heat shock response in <i>Populus trichocarpa</i> , <i>Arabidopsis thaliana</i> and <i>Glycine max</i> . Plant, Cell and Environment, 2011, 34, 1488-1506.	2.8	71
29	Discovery and annotation of small proteins using genomics, proteomics, and computational approaches. Genome Research, 2011, 21, 634-641.	2.4	105
30	<i>FLOWERING LOCUS T</i> duplication coordinates reproductive and vegetative growth in perennial poplar. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, $10756-10761$.	3.3	370
31	Differential Detection of Genetic Loci Underlying Stem and Root Lignin Content in Populus. PLoS ONE, 2010, 5, e14021.	1.1	20
32	Antisense Down-Regulation of <i>4CL</i> Expression Alters Lignification, Tree Growth, and Saccharification Potential of Field-Grown Poplar Â. Plant Physiology, 2010, 154, 874-886.	2.3	195
33	Microsatellite primer resource for <i>Populus</i> developed from the mapped sequence scaffolds of the Nisquallyâ€I genome. New Phytologist, 2009, 181, 498-503.	3.5	34
34	Cytogenetic Analysis of <i>Populus trichocarpa</i> – Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs. Cytogenetic and Genome Research, 2009, 125, 74-80.	0.6	30
35	Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics, 2008, 9, 57.	1.2	68
36	Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Systems Biology, 2008, 2, 16.	3.0	102

#	Article	IF	Citations
37	Genome structure and emerging evidence of an incipient sex chromosome in <i>Populus</i> . Genome Research, 2008, 18, 422-430.	2.4	177
38	The F-Box Gene Family Is Expanded in Herbaceous Annual Plants Relative to Woody Perennial Plants \hat{A} . Plant Physiology, 2008, 148, 1189-1200.	2.3	125
39	Development of AFLP and RAPD markers linked to a locus associated with twisted growth in corkscrew willow (Salix matsudana 'Tortuosa'). Tree Physiology, 2007, 27, 1575-1583.	1.4	11
40	The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313, 1596-1604.	6.0	3,945
41	Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar. Canadian Journal of Forest Research, 2005, 35, 1779-1789.	0.8	134
42	Genetic and physical mapping of Melampsora rust resistance genes in Populus and characterization of linkage disequilibrium and flanking genomic sequence. New Phytologist, 2004, 164, 95-105.	3 . 5	66
43	Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theoretical and Applied Genetics, 2004, 109, 451-463.	1.8	135
44	Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Canadian Journal of Forest Research, 2004, 34, 85-93.	0.8	145
45	Analysis of sex-linked, sequence-characterized amplified region markers in Salix eriocephala. Canadian Journal of Forest Research, 2003, 33, 1785-1790.	0.8	7
46	The Development of Two Flanking SCAR Markers Linked to a Sex Determination Locus in Salix viminalis L. , 2003, 94, 185-189.		42
47	Comparative sequence analysis between orthologous regions of the Arabidopsis and Populus genomes reveals substantial synteny and microcollinearity. Canadian Journal of Forest Research, 2003, 33, 2245-2251.	0.8	24
48	Assessment of genetic similarity among 'Alamo' switchgrass seed lots using RAPD markers. Seed Science and Technology, 2003, 31, 681-689.	0.6	3
49	Genetic variation and spatial structure in sugar maple (Acer saccharumMarsh.) and implications for predicted global-scale environmental change. Global Change Biology, 2000, 6, 335-344.	4.2	19
50	Genetic variation in postfire aspen seedlings in Yellowstone National Park. Molecular Ecology, 1999, 8, 1769-1780.	2.0	23
51	Diversity among Populations of Switchgrass Based on RAPD Markers. Crop Science, 1996, 36, 1017-1022.	0.8	115
52	Phylogenetic relationships of the Juglandaceae. Plant Systematics and Evolution, 1994, 192, 11-29.	0.3	32