
Lee E Gunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7760960/publications.pdf Version: 2024-02-01

LEE F CHINTED

#	Article	IF	CITATIONS
1	The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313, 1596-1604.	6.0	3,945
2	The <i>Physcomitrella patens</i> chromosomeâ€scale assembly reveals moss genome structure and evolution. Plant Journal, 2018, 93, 515-533.	2.8	406
3	<i>FLOWERING LOCUS T</i> duplication coordinates reproductive and vegetative growth in perennial poplar. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10756-10761.	3.3	370
4	Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nature Genetics, 2014, 46, 1089-1096.	9.4	330
5	A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees. PLoS ONE, 2013, 8, e76382.	1.1	315
6	Antisense Down-Regulation of <i>4CL</i> Expression Alters Lignification, Tree Growth, and Saccharification Potential of Field-Grown Poplar Â. Plant Physiology, 2010, 154, 874-886.	2.3	195
7	Genome structure and emerging evidence of an incipient sex chromosome in <i>Populus</i> . Genome Research, 2008, 18, 422-430.	2.4	177
8	Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree <i>Populus trichocarpa</i> . New Phytologist, 2012, 196, 713-725.	3.5	173
9	Characterization of microsatellites revealed by genomic sequencing ofPopulus trichocarpa. Canadian Journal of Forest Research, 2004, 34, 85-93.	0.8	145
10	Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theoretical and Applied Genetics, 2004, 109, 451-463.	1.8	135
11	Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar. Canadian Journal of Forest Research, 2005, 35, 1779-1789.	0.8	134
12	The F-Box Gene Family Is Expanded in Herbaceous Annual Plants Relative to Woody Perennial Plants Â. Plant Physiology, 2008, 148, 1189-1200.	2.3	125
13	Diversity among Populations of Switchgrass Based on RAPD Markers. Crop Science, 1996, 36, 1017-1022.	0.8	115
14	Two Poplar-Associated Bacterial Isolates Induce Additive Favorable Responses in a Constructed Plant-Microbiome System. Frontiers in Plant Science, 2016, 7, 497.	1.7	113
15	<scp>Genomeâ€wide association studies</scp> and expressionâ€based quantitative trait loci analyses reveal roles of <scp>HCT</scp> 2 in caffeoylquinic acid biosynthesis and its regulation by defenseâ€responsive transcription factors in <i>Populus</i> . New Phytologist, 2018, 220, 502-516.	3.5	112
16	High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genomics, 2015, 16, 24.	1.2	106
17	Discovery and annotation of small proteins using genomics, proteomics, and computational approaches. Genome Research, 2011, 21, 634-641.	2.4	105
18	Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Systems Biology, 2008, 2, 16.	3.0	102

LEE E GUNTER

#	Article	IF	CITATIONS
19	A 34K <scp>SNP</scp> genotyping array for <i>Populus trichocarpa</i> : Design, application to the study of natural populations and transferability to other <i>Populus</i> species. Molecular Ecology Resources, 2013, 13, 306-323.	2.2	92
20	Abiotic Stresses Shift Belowground <i>Populus</i> -Associated Bacteria Toward a Core Stress Microbiome. MSystems, 2018, 3, .	1.7	89
21	Comparative physiology and transcriptional networks underlying the heat shock response in <i>Populus trichocarpa</i> , <i>Arabidopsis thaliana</i> and <i>Glycine max</i> . Plant, Cell and Environment, 2011, 34, 1488-1506.	2.8	71
22	Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics, 2008, 9, 57.	1.2	68
23	Genetic and physical mapping of Melampsora rust resistance genes in Populus and characterization of linkage disequilibrium and flanking genomic sequence. New Phytologist, 2004, 164, 95-105.	3.5	66
24	Knockdown of a laccase in <i>Populus deltoides</i> confers altered cell wall chemistry and increased sugar release. Plant Biotechnology Journal, 2016, 14, 2010-2020.	4.1	64
25	A 5-Enolpyruvylshikimate 3-Phosphate Synthase Functions as a Transcriptional Repressor in <i>Populus</i> . Plant Cell, 2018, 30, 1645-1660.	3.1	56
26	The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. Annals of Botany, 2019, 124, 617-626.	1.4	45
27	The Development of Two Flanking SCAR Markers Linked to a Sex Determination Locus in Salix viminalis L. , 2003, 94, 185-189.		42
28	Mediation of plant–mycorrhizal interaction by a lectin receptor-like kinase. Nature Plants, 2019, 5, 676-680.	4.7	42
29	Microsatellite primer resource for <i>Populus</i> developed from the mapped sequence scaffolds of the Nisquallyâ€1 genome. New Phytologist, 2009, 181, 498-503.	3.5	34
30	Phylogenetic relationships of theJuglandaceae. Plant Systematics and Evolution, 1994, 192, 11-29.	0.3	32
31	A New Calmodulin-Binding Protein Expresses in the Context of Secondary Cell Wall Biosynthesis and Impacts Biomass Properties in Populus. Frontiers in Plant Science, 2018, 9, 1669.	1.7	31
32	Cytogenetic Analysis of <i>Populus trichocarpa</i> – Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs. Cytogenetic and Genome Research, 2009, 125, 74-80.	0.6	30
33	PdWND3A, a wood-associated NAC domain-containing protein, affects lignin biosynthesis and composition in Populus. BMC Plant Biology, 2019, 19, 486.	1.6	28
34	Defining the genetic components of callus formation: A GWAS approach. PLoS ONE, 2018, 13, e0202519.	1.1	27
35	Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop <i>Populus</i> . Sustainable Energy and Fuels, 2019, 3, 195-207.	2.5	27
36	Overexpression of a Domain of Unknown Function 231-containing protein increases O-xylan acetylation and cellulose biosynthesis in Populus. Biotechnology for Biofuels, 2017, 10, 311.	6.2	26

LEE E GUNTER

#	Article	IF	CITATIONS
37	Initial characterization of shade avoidance response suggests functional diversity between <i>Populus</i> phytochrome B genes. New Phytologist, 2012, 196, 726-737.	3.5	25
38	Comparative sequence analysis between orthologous regions of theArabidopsisandPopulusgenomes reveals substantial synteny and microcollinearity. Canadian Journal of Forest Research, 2003, 33, 2245-2251.	0.8	24
39	Genetic variation in postfire aspen seedlings in Yellowstone National Park. Molecular Ecology, 1999, 8, 1769-1780.	2.0	23
40	Phytobiome and Transcriptional Adaptation of <i>Populus deltoides</i> to Acute Progressive Drought and Cyclic Drought. Phytobiomes Journal, 2018, 2, 249-260.	1.4	23
41	Overexpression of a Domain of Unknown Function 266-containing protein results in high cellulose content, reduced recalcitrance, and enhanced plant growth in the bioenergy crop Populus. Biotechnology for Biofuels, 2017, 10, 74.	6.2	22
42	Agronomic performance of Populus deltoides trees engineered for biofuel production. Biotechnology for Biofuels, 2017, 10, 253.	6.2	22
43	Differential Detection of Genetic Loci Underlying Stem and Root Lignin Content in Populus. PLoS ONE, 2010, 5, e14021.	1.1	20
44	Genome Anchored QTLs for Biomass Productivity in Hybrid Populus Grown under Contrasting Environments. PLoS ONE, 2013, 8, e54468.	1.1	20
45	Genetic variation and spatial structure in sugar maple (Acer saccharumMarsh.) and implications for predicted global-scale environmental change. Global Change Biology, 2000, 6, 335-344.	4.2	19
46	Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus) Tj ETQq0 0 0 rg	gBT /Overl 1.1	ock 10 Tf 50
47	Overexpression of a <i>Prefoldin β</i> subunit gene reduces biomass recalcitrance in the bioenergy crop <i>Populus</i> . Plant Biotechnology Journal, 2020, 18, 859-871.	4.1	17
48	Development of AFLP and RAPD markers linked to a locus associated with twisted growth in corkscrew willow (Salix matsudana 'Tortuosa'). Tree Physiology, 2007, 27, 1575-1583.	1.4	11
49	Correlating laser-induced breakdown spectroscopy with neutron activation analysis to determine the elemental concentration in the ionome of the Populus trichocarpa leaf. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 138, 46-53.	1.5	11
50	Analysis of sex-linked, sequence-characterized amplified region markers in Salix eriocephala. Canadian Journal of Forest Research, 2003, 33, 1785-1790.	0.8	7
51	Scaling nitrogen and carbon interactions: what are the consequences of biological buffering?. Ecology and Evolution, 2015, 5, 2839-2850.	0.8	4
52	Assessment of genetic similarity among 'Alamo' switchgrass seed lots using RAPD markers. Seed Science and Technology, 2003, 31, 681-689.	0.6	3