Gregorij Kurillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7760933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the Accuracy of the Azure Kinect and Kinect v2. Sensors, 2022, 22, 2469.	3.8	30
2	The Black Box of Technological Outcome Measures: An Example in Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2022, 9, 555-569.	2.6	3
3	On the Development of an Acoustic-Driven Method to Improve Driver's Comfort Based on Deep Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 2923-2932.	8.0	4
4	Motion sensorâ€acquired reachable workspace correlates with patientâ€reported upper extremity activities of daily living (ADL) function in facioscapulohumeral dystrophy. Muscle and Nerve, 2021, 63, 250-257.	2.2	5
5	Usefulness of Kinect sensor–based reachable workspace system for assessing upper extremity dysfunction in breast cancer patients. Supportive Care in Cancer, 2020, 28, 779-786.	2.2	4
6	Upper Limb Three-Dimensional Reachable Workspace Analysis Using the Kinect Sensor in Hemiplegic Stroke Patients. American Journal of Physical Medicine and Rehabilitation, 2020, 99, 397-403.	1.4	11
7	Reachable Workspace and Proximal Function Measures for Quantifying Upper Limb Motion. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3285-3294.	6.3	6
8	Longitudinal study of upper extremity reachable workspace in fascioscapulohumeral muscular dystrophy. Neuromuscular Disorders, 2019, 29, 503-513.	0.6	10
9	User experience and interaction performance in 2D/3D telecollaboration. Future Generation Computer Systems, 2018, 82, 77-88.	7.5	53
10	The Feasibility and Usability of RunningCoach: A Remote Coaching System for Long-Distance Runners. Sensors, 2018, 18, 175.	3.8	14
11	Towards coordinated bandwidth adaptations for hundred-scale 3D tele-immersive systems. Multimedia Systems, 2017, 23, 421-434.	4.7	6
12	Real-time communication for Kinect-based telerehabilitation. Future Generation Computer Systems, 2017, 75, 72-81.	7.5	18
13	Longitudinal evaluation of upper extremity reachable workspace in ALS by Kinect sensor. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 17-23.	1.7	18
14	Real-Time Tele-Monitoring of Patients with Chronic Heart-Failure Using a Smartphone: Lessons Learned. IEEE Transactions on Affective Computing, 2016, 7, 206-219.	8.3	42
15	Upper extremity 3-dimensional reachable workspace assessment in amyotrophic lateral sclerosis by Kinect sensor. Muscle and Nerve, 2016, 53, 234-241.	2.2	27
16	Reachable workspace and performance of upper limb (PUL) in duchenne muscular dystrophy. Muscle and Nerve, 2016, 53, 545-554.	2.2	31
17	New Emergency Medicine Paradigm via Augmented Telemedicine. Lecture Notes in Computer Science, 2016, , 502-511.	1.3	6
18	Upper extremity 3â€dimensional reachable workspace analysis in dystrophinopathy using Kinect. Muscle and Nerve, 2015, 52, 344-355.	2.2	37

Gregorij Kurillo

#	Article	IF	CITATIONS
19	Reachable workspace reflects dynamometerâ€measured upper extremity strength in facioscapulohumeral muscular dystrophy. Muscle and Nerve, 2015, 52, 948-955.	2.2	24
20	Reachable workspace in facioscapulohumeral muscular dystrophy (FSHD) by kinect. Muscle and Nerve, 2015, 51, 168-175.	2.2	47
21	Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 2015, 58, 145-155.	4.3	48
22	Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition. Journal of Visual Communication and Image Representation, 2014, 25, 24-38.	2.8	240
23	Camera Networks for Healthcare, Teleimmersion, and Surveillance. Computer, 2014, 47, 26-36.	1.1	11
24	Berkeley MHAD: A comprehensive Multimodal Human Action Database. , 2013, , .		300
25	Geometric and Color Calibration of Multiview Panoramic Cameras for Life-Size 3D Immersive Video. , 2013, , .		3
26	3D teleimmersion for collaboration and interaction of geographically distributed users. Virtual Reality, 2013, 17, 29-43.	6.1	35
27	Evaluation of upper extremity reachable workspace using Kinect camera. Technology and Health Care, 2013, 21, 641-656.	1.2	86
28	Validity, Reliability, and Sensitivity of a 3D Vision Sensor-based Upper Extremity Reachable Workspace Evaluation in Neuromuscular Diseases. PLOS Currents, 2013, 5, .	1.4	19
29	Upper extremity reachable workspace evaluation with Kinect. Studies in Health Technology and Informatics, 2013, 184, 247-53.	0.3	21
30	Sequence of the Most Informative Joints (SMIJ): A new representation for human skeletal action recognition. , 2012, , .		56
31	Development and Application of Stereo Camera-Based Upper Extremity Workspace Evaluation in Patients with Neuromuscular Diseases. PLoS ONE, 2012, 7, e45341.	2.5	37
32	Real-time human pose detection and tracking for tele-rehabilitation in virtual reality. Studies in Health Technology and Informatics, 2012, 173, 320-4.	0.3	12
33	Assessment of reach-to-grasp trajectories toward stationary objects. Clinical Biomechanics, 2011, 26, 811-818.	1.2	20
34	Color-plus-depth level-of-detail in 3D tele-immersive video. , 2011, , .		35
35	Real-time 3D avatars for tele-rehabilitation in virtual reality. Studies in Health Technology and Informatics, 2011, 163, 290-6.	0.3	6
36	Multi-camera tele-immersion system with real-time model driven data compression. Visual Computer, 2010, 26, 3-15.	3.5	29

Gregorij Kurillo

#	Article	IF	CITATIONS
37	Enabling multi-party 3D tele-immersive environments with ViewCast. ACM Transactions on Multimedia Computing, Communications and Applications, 2010, 6, 1-30.	4.3	43
38	A methodology for remote virtual interaction in teleimmersive environments. , 2010, , .		10
39	Cyberarchaeology: Experimenting with teleimmersive archaeology. , 2010, , .		22
40	Real-time stereo-vision system for 3D teleimmersive collaboration. , 2010, , .		16
41	Teleimmersive 3D collaborative environment for cyberarchaeology. , 2010, , .		5
42	Teleimmersive Archaeology: Simulation and Cognitive Impact. Lecture Notes in Computer Science, 2010, , 422-431.	1.3	4
43	Framework for hierarchical calibration of multi-camera systems for teleimmersion. , 2009, , .		8
44	Wide-area external multi-camera calibration using vision graphs and virtual calibration object. , 2008, , .		40
45	The Effect of Interactivity on Learning Physical Actions in Virtual Reality. Media Psychology, 2008, 11, 354-376.	3.6	139
46	A Framework for Collaborative Real-Time 3D Teleimmersion in a Geographically Distributed Environment. , 2008, , .		20
47	ViewCast. , 2007, , .		40
48	Multi-Fingered Grasping and Manipulation in Virtual Environments Using an Isometric Finger Device. Presence: Teleoperators and Virtual Environments, 2007, 16, 293-306.	0.6	9
49	Skeleton-Based Data Compression for Multi-camera Tele-Immersion System. , 2007, , 714-723.		9
50	Assessment and training of hand dexterity in virtual environment. Journal Europeen Des Systemes Automatises, 2007, 41, 219-238.	0.4	0
51	Grip force tracking system for assessment and rehabilitation of hand function. Technology and Health Care, 2005, 13, 137-49.	1.2	13
52	Force tracking system for the assessment of grip force control in patients with neuromuscular diseases. Clinical Biomechanics, 2004, 19, 1014-1021.	1.2	71
53	Static analysis of two-fingered grips. Journal of Automatic Control, 2002, 12, 38-45.	1.0	3