
Steven Petratos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7760819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced re-myelination in transthyretin null mice following cuprizone mediated demyelination. Neuroscience Letters, 2022, 766, 136287.	2.1	3
2	Lumbar spine intrathecal transplantation of neural precursor cells promotes oligodendrocyte proliferation in hot spots of chronic demyelination. Brain Pathology, 2022, 32, e13040.	4.1	7
3	Novel contributors to B cell activation during inflammatory CNS demyelination; An oNGOing process. International Journal of Medical Sciences, 2022, 19, 164-174.	2.5	1
4	B-cells expressing NgR1 and NgR3 are localized to EAE-induced inflammatory infiltrates and are stimulated by BAFF. Scientific Reports, 2021, 11, 2890.	3.3	11
5	Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury. Experimental Neurology, 2020, 326, 113167.	4.1	22
6	That's a Wrap! Molecular Drivers Governing Neuronal Nogo Receptor-Dependent Myelin Plasticity and Integrity. Frontiers in Cellular Neuroscience, 2020, 14, 227.	3.7	5
7	The Role of Transthyretin in Oligodendrocyte Development. Scientific Reports, 2020, 10, 4189.	3.3	15
8	Oligodendroglial Lineage Cells in Thyroid Hormone-Deprived Conditions. Stem Cells International, 2019, 1-13.	2.5	14
9	Limiting Neuronal Nogo Receptor 1 Signaling during Experimental Autoimmune Encephalomyelitis Preserves Axonal Transport and Abrogates Inflammatory Demyelination. Journal of Neuroscience, 2019, 39, 5562-5580.	3.6	16
10	Can We Design a Nogo Receptor-Dependent Cellular Therapy to Target MS?. Cells, 2019, 8, 1.	4.1	170
11	Nogo receptor expression in microglia/macrophages during experimental autoimmune encephalomyelitis progression. Neural Regeneration Research, 2018, 13, 896.	3.0	11
12	Amyloid-beta-dependent phosphorylation of collapsin response mediator protein-2 dissociates kinesin in Alzheimer's disease. Neural Regeneration Research, 2018, 13, 1066.	3.0	17
13	Blocked, delayed, or obstructed: What causes poor white matter development in intrauterine growth restricted infants?. Progress in Neurobiology, 2017, 154, 62-77.	5.7	32
14	Nogo receptor 1 regulates Caspr distribution at axo-glial units in the central nervous system. Scientific Reports, 2017, 7, 8958.	3.3	11
15	Overcoming Monocarboxylate Transporter 8 (MCT8)-Deficiency to Promote Human Oligodendrocyte Differentiation and Myelination. EBioMedicine, 2017, 25, 122-135.	6.1	27
16	The Influence of Differentially Expressed Tissue-Type Plasminogen Activator in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis. PLoS ONE, 2016, 11, e0158653.	2.5	7
17	A potent Nrf2 activator, dh404, bolsters antioxidant capacity in glial cells and attenuates ischaemic retinopathy. Clinical Science, 2016, 130, 1375-1387.	4.3	27
18	Thyroid Hormone Signaling in Oligodendrocytes: from Extracellular Transport to Intracellular Signal. Molecular Neurobiology, 2016, 53, 6568-6583.	4.0	63

STEVEN PETRATOS

#	Article	IF	CITATIONS
19	Hematopoietic stem cell transplantation for multiple sclerosis: is it a clinical reality?. Stem Cell Research and Therapy, 2016, 7, 12.	5.5	21
20	Axonal degeneration in multiple sclerosis: defining therapeutic targets by identifying the causes of pathology. Neurodegenerative Disease Management, 2015, 5, 527-548.	2.2	10
21	Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells. Frontiers in Cellular Neuroscience, 2014, 8, 214.	3.7	22
22	Axonal degeneration in multiple sclerosis: can we predict and prevent permanent disability?. Acta Neuropathologica Communications, 2014, 2, 97.	5.2	49
23	Human Embryonic Stem Cell-Derived Oligodendrocytes: Protocols and Perspectives. Stem Cells and Development, 2013, 22, 2459-2476.	2.1	44
24	Multiple Sclerosis. Neuroscientist, 2013, 19, 394-408.	3.5	31
25	Stop <scp>CRMP</scp> ing my style: a new competitive model of <scp>CRMP</scp> oligomerization. Journal of Neurochemistry, 2013, 125, 800-802.	3.9	2
26	Nogo-Receptor 1 Deficiency Has No Influence on Immune Cell Repertoire or Function during Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2013, 8, e82101.	2.5	5
27	The Beta-Amyloid Protein of Alzheimer's Disease: Communication Breakdown by Modifying the Neuronal Cytoskeleton. International Journal of Alzheimer's Disease, 2013, 2013, 1-15.	2.0	45
28	Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain, 2012, 135, 1794-1818.	7.6	107
29	Phosphorylation and Cleavage of the Family of Collapsin Response Mediator Proteins May Play a Central Role in Neurodegeneration after CNS Trauma. Journal of Neurotrauma, 2012, 29, 1728-1735.	3.4	17
30	Novel Therapeutic Targets for Axonal Degeneration in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2010, 69, 323-334.	1.7	26
31	Mesenchymal Stem Cells for Treatment of CNS Injury. Current Neuropharmacology, 2010, 8, 316-323.	2.9	58
32	The β-amyloid protein of Alzheimer's disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism. Brain, 2008, 131, 90-108.	7.6	165
33	Leukemia Inhibitory Factor Arrests Oligodendrocyte Death and Demyelination in Spinal Cord Injury. Journal of Neuropathology and Experimental Neurology, 2006, 65, 914-929.	1.7	59
34	TNFα mediates Schwann cell death by upregulating p75NTR expression without sustained activation of NFκB. Neurobiology of Disease, 2005, 20, 412-427.	4.4	32
35	Expression of the low-affinity neurotrophin receptor, p75NTR, is upregulated by oligodendroglial progenitors adjacent to the subventricular zone in response to demyelination. Glia, 2004, 48, 64-75.	4.9	49
36	Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiology of Disease, 2004, 15, 415-436.	4.4	405

3

STEVEN PETRATOS

#	Article	IF	CITATIONS
37	Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. Journal of Neurochemistry, 2003, 87, 752-763.	3.9	91
38	Schwann Cell Apoptosis in the Postnatal Axotomized Sciatic Nerve Is Mediated Via NGF through the Low-Affinity Neurotrophin Receptor. Journal of Neuropathology and Experimental Neurology, 2003, 62, 398-411.	1.7	40
39	LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nature Medicine, 2002, 8, 613-619.	30.7	241
40	Localization of P450scc and 5α-reductase type-2 in the cerebellum of fetal and newborn sheep. Developmental Brain Research, 2000, 123, 81-86.	1.7	31
41	Induction of Postnatal Schwann Cell Death by the Low-Affinity Neurotrophin Receptor <i>In Vitro</i> and after Axotomy. Journal of Neuroscience, 2000, 20, 5741-5747.	3.6	120