
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7760680/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | lF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Organometallic interactions between metal nanoparticles and carbon-based molecules: A surface reactivity rationale. Advances in Organometallic Chemistry, 2022, , 43-103.                                    | 0.5  | 3         |
| 2  | Remarkable catalytic activity of polymeric membranes containing gel-trapped palladium nanoparticles for hydrogenation reactions. Catalysis Today, 2021, 364, 263-269.                                        | 2.2  | 7         |
| 3  | Design of Glycerol-Based Solvents for the Immobilization of Palladium Nanocatalysts: A<br>Hydrogenation Study. ACS Sustainable Chemistry and Engineering, 2021, 9, 6875-6885.                                | 3.2  | 16        |
| 4  | Palladium and Copper: Advantageous Nanocatalysts for Multi-Step Transformations. Nanomaterials,<br>2021, 11, 1891.                                                                                           | 1.9  | 6         |
| 5  | Understanding Cu( <scp>ii</scp> )-based systems for C(sp <sup>3</sup> )–H bond functionalization:<br>insights into the synthesis of aza-heterocycles. Organic and Biomolecular Chemistry, 2021, 20, 219-227. | 1.5  | 2         |
| 6  | Copper nanocatalysts applied in coupling reactions: a mechanistic insight. Nanoscale, 2021, 13, 18817-18838.                                                                                                 | 2.8  | 8         |
| 7  | Palladium nanoparticles stabilized by novel choline-based ionic liquids in glycerol applied in hydrogenation reactions. Catalysis Today, 2020, 346, 69-75.                                                   | 2.2  | 24        |
| 8  | Palladium Nanoparticles in Polyols: Synthesis, Catalytic Couplings, and Hydrogenations. Chemical<br>Reviews, 2020, 120, 1146-1183.                                                                           | 23.0 | 155       |
| 9  | Palladium Nanoparticles in Glycerol/Ionic Liquid/Carbon Dioxide Medium as Hydrogenation Catalysts.<br>ACS Applied Nano Materials, 2020, 3, 12240-12249.                                                      | 2.4  | 11        |
| 10 | Frontispiece: Glycerol Boosted Rh atalyzed Hydroaminomethylation Reaction: A Mechanistic Insight.<br>Chemistry - A European Journal, 2020, 26, .                                                             | 1.7  | 0         |
| 11 | Glycerol Boosted Rh atalyzed Hydroaminomethylation Reaction: A Mechanistic Insight. Chemistry - A<br>European Journal, 2020, 26, 12553-12559.                                                                | 1.7  | 6         |
| 12 | Earth-Abundant d-Block Metal Nanocatalysis for Coupling Reactions in Polyols. Molecular Catalysis,<br>2020, , 249-280.                                                                                       | 1.3  | 2         |
| 13 | Tetraalkylammonium Functionalized Hydrochars as Efficient Supports for Palladium Nanocatalysts.<br>ChemCatChem, 2020, 12, 2295-2303.                                                                         | 1.8  | 5         |
| 14 | Nanoscale Metal Phosphide Phase Segregation to Bi/P Core/Shell Structure. Reactivity as a Source of<br>Elemental Phosphorus. Chemistry of Materials, 2020, 32, 4213-4222.                                    | 3.2  | 6         |
| 15 | Hydrogenation reactions catalyzed by colloidal palladium nanoparticles under flow regime. AICHE<br>Journal, 2019, 65, e16752.                                                                                | 1.8  | 6         |
| 16 | Bimetallic Nanocatalysts in Glycerol for Applications in Controlled Synthesis. A Structure–Reactivity<br>Relationship Study. ACS Applied Nano Materials, 2019, 2, 1033-1044.                                 | 2.4  | 18        |
| 17 | Metal-based nanoparticles dispersed in glycerol: An efficient approach for catalysis. Catalysis Today,<br>2018, 310, 98-106.                                                                                 | 2.2  | 26        |
| 18 | Palladium nanocatalysts in glycerol: Tuning the reactivity by effect of the stabilizer. Catalysis<br>Communications, 2018, 104, 22-27.                                                                       | 1.6  | 17        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Stable Zeroâ€Valent Nickel Nanoparticles in Glycerol: Synthesis and Applications in Selective<br>Hydrogenations. Advanced Synthesis and Catalysis, 2018, 360, 3544-3552.                                                                                   | 2.1 | 36        |
| 20 | Palladium-mediated radical homocoupling reactions: a surface catalytic insight. Catalysis Science and Technology, 2018, 8, 4766-4773.                                                                                                                      | 2.1 | 14        |
| 21 | Catalytic membrane reactor for Suzukiâ€Miyaura Câ^'C cross oupling: Explanation for its high efficiency<br>via modeling. AICHE Journal, 2017, 63, 698-704.                                                                                                 | 1.8 | 16        |
| 22 | Making Copper(0) Nanoparticles in Glycerol: A Straightforward Synthesis for a Multipurpose<br>Catalyst. Advanced Synthesis and Catalysis, 2017, 359, 2832-2846.                                                                                            | 2.1 | 48        |
| 23 | Bimetallic Nanoparticles in Alternative Solvents for Catalytic Purposes. Catalysts, 2017, 7, 207.                                                                                                                                                          | 1.6 | 44        |
| 24 | P-Stereogenic Phosphines for the Stabilisation of Metal Nanoparticles. A Surface State Study.<br>Catalysts, 2016, 6, 213.                                                                                                                                  | 1.6 | 3         |
| 25 | Hybrid Catalytic Membranes: Tunable and Versatile Materials for Fine Chemistry Applications.<br>Materials Today: Proceedings, 2016, 3, 419-423.                                                                                                            | 0.9 | 5         |
| 26 | Metal and Metal Oxide Nanoparticles: A Lever for C–H Functionalization. ACS Catalysis, 2016, 6,<br>3537-3552.                                                                                                                                              | 5.5 | 86        |
| 27 | Palladium nanoparticles stabilised by cinchona-based alkaloids in glycerol: efficient catalysts for surface assisted processes. RSC Advances, 2016, 6, 93205-93216.                                                                                        | 1.7 | 27        |
| 28 | Key Nonâ€Metal Ingredients for Cuâ€catalyzed "Click―Reactions in Glycerol: Nanoparticles as Efficient<br>Forwarders. Chemistry - A European Journal, 2016, 22, 18247-18253.                                                                                | 1.7 | 21        |
| 29 | Ionic liquids in catalysis: molecular and nanometric metal systems. French-Ukrainian Journal of<br>Chemistry, 2016, 4, 23-36.                                                                                                                              | 0.1 | 2         |
| 30 | Palladium nanoparticles in ionic liquids stabilized by mono-phosphines. Catalytic applications.<br>French-Ukrainian Journal of Chemistry, 2016, 4, 37-50.                                                                                                  | 0.1 | 3         |
| 31 | Metalâ€Free Intermolecular Azide–Alkyne Cycloaddition Promoted by Glycerol. Chemistry - A European<br>Journal, 2015, 21, 18706-18710.                                                                                                                      | 1.7 | 25        |
| 32 | Tuning the hydrogen donor/acceptor behavior of ionic liquids in Pd-catalyzed multi-step reactions.<br>Catalysis Communications, 2015, 63, 56-61.                                                                                                           | 1.6 | 11        |
| 33 | Palladium nanoparticles in glycerol: a clear-cut catalyst for one-pot multi-step processes applied in the synthesis of heterocyclic compounds. Organic Chemistry Frontiers, 2015, 2, 312-318.                                                              | 2.3 | 46        |
| 34 | Synthesis of Chiral Functionalised Cyclobutylpyrrolidines and Cyclobutylamino Alcohols from<br>(–)â€{ <i>S</i> )â€Verbenone – Applications in the Stabilisation of Ruthenium Nanocatalysts. European<br>Journal of Organic Chemistry, 2015, 2015, 810-819. | 1.2 | 10        |
| 35 | High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki–Miyaura cross-coupling reaction. Journal of Membrane Science, 2015, 492, 331-339.                                           | 4.1 | 57        |
| 36 | Palladium nanoparticles stabilised by PTA derivatives in glycerol: Synthesis and catalysis in a green wet phase. Catalysis Communications, 2015, 63, 47-51.                                                                                                | 1.6 | 24        |

| #  | Article                                                                                                                                                                                                                                             | IF                 | CITATIONS          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| 37 | Copper(I) Oxide Nanoparticles in Glycerol: A Convenient Catalyst for Cross oupling and Azide–Alkyne<br>Cycloaddition Processes. ChemCatChem, 2014, 6, 2929-2936.                                                                                    | 1.8                | 47                 |
| 38 | Triazolium Salts as Appropriate Catalytic Scaffolds for 1,4â€Additions to α,βâ€Unsaturated Carbonyls.<br>European Journal of Organic Chemistry, 2014, 2014, 2160-2167.                                                                              | 1.2                | 10                 |
| 39 | Efficient Palladium Catalysts Containing Original Imidazolium-Tagged Chiral Diamidophosphite Ligands<br>for Asymmetric Allylic Substitutions in Neat Ionic Liquid. Organometallics, 2014, 33, 771-779.                                              | 1.1                | 21                 |
| 40 | Unexpected bond activations promoted by palladium nanoparticles. Dalton Transactions, 2014, 43, 9038.                                                                                                                                               | 1.6                | 11                 |
| 41 | Copper-Catalyzed Coupling of <i>N</i> -Tosylhydrazones with Amines: Synthesis of Fluorene<br>Derivatives. ACS Catalysis, 2014, 4, 4498-4503.                                                                                                        | 5.5                | 37                 |
| 42 | Heteropolymetallic Complexes Linked to a 9,10-Dihydroanthracenyl Frame. Ruthenium as Active<br>Spectator for Palladium Reactivity. Organometallics, 2014, 33, 1812-1819.                                                                            | 1.1                | 2                  |
| 43 | Glycerol as Suitable Solvent for the Synthesis of Metallic Species and Catalysis. Chemistry - A<br>European Journal, 2014, 20, 10884-10893.                                                                                                         | 1.7                | 48                 |
| 44 | Hydrogenation Processes at the Surface of Ruthenium Nanoparticles: A NMR Study. Topics in Catalysis, 2013, 56, 1253-1261.                                                                                                                           | 1.3                | 25                 |
| 45 | Palladium Nanoparticles in Glycerol: A Versatile Catalytic System for Cī£;X Bond Formation and<br>Hydrogenation Processes. Advanced Synthesis and Catalysis, 2013, 355, 3648-3660.                                                                  | 2.1                | 61                 |
| 46 | 9,10-Dihydroanthracenyl structures: original ligands for the synthesis of polymetallic complexes<br>through selective π-coordination. Dalton Transactions, 2013, 42, 1136-1143.                                                                     | 1.6                | 6                  |
| 47 | Polymetallic complexes linked to a single-frame ligand: cooperative effects in catalysis. Dalton<br>Transactions, 2013, 42, 10664.                                                                                                                  | 1.6                | 130                |
| 48 | Glycerol – A Nonâ€Innocent Solvent for Rhâ€Catalysed Pauson–Khand Carbocyclisations. European<br>Journal of Inorganic Chemistry, 2013, 2013, 5138-5144.                                                                                             | 1.0                | 12                 |
| 49 | <i>ortho</i> â€(Dimesitylboryl)phenylphosphines: Positive Boryl Effect in the Palladiumâ€Catalyzed<br>Suzuki–Miyaura Coupling of 2â€Chloropyridines. Advanced Synthesis and Catalysis, 2013, 355, 2274-2284.                                        | 2.1                | 39                 |
| 50 | (1S,8R,15S,19R)-17-Benzyl-17-azapentacyclo[6.6.5.02,7.09,14.015,19]nonadeca-2(7),3,5,9(14),10,12-hexaene<br>chloroform monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68,<br>o2881-o2881.                           | 0.2                | 3                  |
| 51 | Tris(η <sup>5</sup> -cyclopentadienyl)-tris[η <sup>6</sup> -[9,10-dihydroanthracene-9,10- <i>endo</i> -3′,4′-<br>tris(hexafluorophosphate) acetone disolvate. Acta Crystallographica Section E: Structure Reports<br>Online, 2012, 68, m1313-m1314. | ·( <i>N</i><br>0.2 | -benzyl)pyrrc<br>3 |
| 52 | Synthesis of Platinum–Ruthenium Nanoparticles under Supercritical CO <sub>2</sub> and their<br>Confinement in Carbon Nanotubes: Hydrogenation Applications. ChemCatChem, 2012, 4, 118-122.                                                          | 1.8                | 41                 |
| 53 | A new insight into ortho-(dimesitylboryl)diphenylphosphines: applications in Pd-catalyzed<br>Suzuki–Miyaura couplings and evidence for secondary π-interaction. Chemical Communications, 2011,<br>47, 8163.                                         | 2.2                | 56                 |
| 54 | A smart palladium catalyst in ionic liquid for tandem processes. Physical Chemistry Chemical Physics, 2011, 13, 13579.                                                                                                                              | 1.3                | 34                 |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Efficient recycling of a chiral palladium catalytic system for asymmetric allylic substitutions in ionic liquid. Chemical Communications, 2011, 47, 7869.                                                                                                       | 2.2 | 20        |
| 56 | An overview of chiral molybdenum complexes applied in enantioselective catalysis. Catalysis Science and Technology, 2011, 1, 1109.                                                                                                                              | 2.1 | 30        |
| 57 | Supported Ionic Liquid Phase Containing Palladium Nanoparticles on Functionalized Multiwalled<br>Carbon Nanotubes: Catalytic Materials for Sequential Heck Coupling/Hydrogenation Process.<br>ChemCatChem, 2011, 3, 749-754.                                    | 1.8 | 63        |
| 58 | Rhodium complexes containing chiral P-donor ligands as catalysts for asymmetric hydrogenation in non conventional media. Catalysis Letters, 2011, 141, 808-816.                                                                                                 | 1.4 | 15        |
| 59 | Chiral Cationic [Cp′Mo(CO) <sub>2</sub> (NCMe)] <sup>+</sup> Species – Catalyst Precursors for<br>Olefin Epoxidation with H <sub>2</sub> O <sub>2</sub> and <i>tert</i> â€Butyl Hydroperoxide. European<br>Journal of Inorganic Chemistry, 2011, 2011, 666-673. | 1.0 | 42        |
| 60 | Dioxomolybdenum(VI) complexes containing chiral oxazolines applied in alkenes epoxidation in ionic<br>liquids: A highly diastereoselective catalyst. Applied Catalysis A: General, 2011, 398, 88-95.                                                            | 2.2 | 29        |
| 61 | New bicyclic phosphorous ligands: synthesis, structure and catalytic applications in ionic liquids.<br>Tetrahedron, 2011, 67, 421-428.                                                                                                                          | 1.0 | 21        |
| 62 | Palladium Nanoparticles Applied in Organic Synthesis as Catalytic Precursors. Current Organic Chemistry, 2011, 15, 3127-3174.                                                                                                                                   | 0.9 | 76        |
| 63 | cis-Dioxomolybdenum(VI) Complexes Containing Chiral Ligands: Synthesis and Catalytic Application in<br>Olefin Epoxidation. Current Inorganic Chemistry, 2011, 1, 131-139.                                                                                       | 0.2 | 0         |
| 64 | Stabilization of Pd, Pt and Ru nanoparticles by optically active CO/styrene copolymers. Inorganic Chemistry Communication, 2010, 13, 766-768.                                                                                                                   | 1.8 | 4         |
| 65 | Norbornene Bidentate Ligands: Coordination Chemistry and Enantioselective Catalytic Applications.<br>European Journal of Inorganic Chemistry, 2010, 2010, 758-766.                                                                                              | 1.0 | 4         |
| 66 | Ruthenium nanoparticles supported on multi-walled carbon nanotubes: Highly effective catalytic system for hydrogenation processes. Journal of Molecular Catalysis A, 2010, 332, 106-112.                                                                        | 4.8 | 34        |
| 67 | Unexpected activation of carbon–bromide bond promoted by palladium nanoparticles in Suzuki C–C<br>couplings. Dalton Transactions, 2010, 39, 9719.                                                                                                               | 1.6 | 37        |
| 68 | Imidazolium-based ionic liquids immobilized on solid supports: effect on the structure and thermostability. Dalton Transactions, 2010, 39, 7565.                                                                                                                | 1.6 | 41        |
| 69 | Enantiomerically Pure P,N Chelates Based on Phospholene Rings: Palladium Complexes and Catalytic<br>Applications in Allylic Substitution. European Journal of Inorganic Chemistry, 2009, 2009, 5583-5591.                                                       | 1.0 | 19        |
| 70 | <sup>95</sup> Mo NMR: a useful tool for structural studies in solution. Magnetic Resonance in Chemistry, 2009, 47, 573-577.                                                                                                                                     | 1.1 | 16        |
| 71 | New chiral diphosphites derived from substituted 9,10-dihydroanthracene. Applications in asymmetric catalytic processes. Tetrahedron: Asymmetry, 2009, 20, 1009-1014.                                                                                           | 1.8 | 17        |
| 72 | Palladium and ruthenium nanoparticles: Reactivity and coordination at the metallic surface. Comptes<br>Rendus Chimie, 2009, 12, 533-545.                                                                                                                        | 0.2 | 28        |

5

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Ruthenium and rhodium nanoparticles as catalytic precursors in supercritical carbon dioxide.<br>Catalysis Today, 2009, 148, 398-404.                                                                                                                            | 2.2 | 29        |
| 74 | A Single Catalyst for Sequential Reactions: Dual Homogeneous and Heterogeneous Behavior of Palladium Nanoparticles in Solution. ChemCatChem, 2009, 1, 244-246.                                                                                                  | 1.8 | 46        |
| 75 | Cyclometallation of amino-imines on palladium complexes. The effect of the solvent on the experimental and calculated mechanism. Dalton Transactions, 2009, , 8292.                                                                                             | 1.6 | 27        |
| 76 | Stereo-specific synthesis of hydroanthracene-dicarboximides. Tetrahedron Letters, 2008, 49, 6720-6723.                                                                                                                                                          | 0.7 | 13        |
| 77 | DOSY technique applied to palladium nanoparticles in ionic liquids. Magnetic Resonance in Chemistry, 2008, 46, 739-743.                                                                                                                                         | 1.1 | 21        |
| 78 | An Overview of Palladium Nanocatalysts: Surface and Molecular Reactivity. European Journal of<br>Inorganic Chemistry, 2008, 2008, 3577-3586.                                                                                                                    | 1.0 | 188       |
| 79 | Palladium Nanoparticles in Allylic Alkylations and Heck Reactions: The Molecular Nature of the<br>Catalyst Studied in a Membrane Reactor. Advanced Synthesis and Catalysis, 2008, 350, 2583-2598.                                                               | 2.1 | 60        |
| 80 | Molybdenum(VI)-catalysed olefin epoxidation: Structure and reactivity study. Inorganica Chimica Acta, 2008, 361, 2740-2746.                                                                                                                                     | 1.2 | 25        |
| 81 | A new and specific mode of stabilization of metallic nanoparticles. Chemical Communications, 2008, ,<br>3296.                                                                                                                                                   | 2.2 | 77        |
| 82 | Supported ionic liquid phase catalysis on functionalized carbon nanotubes. Chemical<br>Communications, 2008, , 4201.                                                                                                                                            | 2.2 | 76        |
| 83 | An outstanding palladium system containing a C2-symmetrical phosphite ligand for enantioselective allylic substitution processes. Chemical Communications, 2008, , 6197.                                                                                        | 2.2 | 30        |
| 84 | Palladium nanoparticles immobilized in ionic liquid: An outstanding catalyst for the Suzuki C–C<br>coupling. Catalysis Communications, 2008, 9, 273-275.                                                                                                        | 1.6 | 78        |
| 85 | Metal Nanoparticles Dispersed in Solution: Tests to Identify the Catalyst Nature. , 2008, , 427-436.                                                                                                                                                            |     | 2         |
| 86 | Palladium catalyzed Suzuki C–C couplings in an ionic liquid: nanoparticles responsible for the catalytic activity. Dalton Transactions, 2007, , 5572.                                                                                                           | 1.6 | 95        |
| 87 | Synthesis, Structure, Redox Properties, and Catalytic Activity of New Ruthenium Complexes<br>Containing Neutral or Anionic and Facial or Meridional Ligands:  An Evaluation of Electronic and<br>Geometrical Effects. Inorganic Chemistry, 2007, 46, 5381-5389. | 1.9 | 19        |
| 88 | Cyclopropanation of Cyclohexenone by Diazomethane Catalyzed by Palladium Diacetate:Â Evidence for<br>the Formation of Palladium(0) Nanoparticles. Organometallics, 2007, 26, 3306-3314.                                                                         | 1.1 | 38        |
| 89 | Synthesis of new functionalized polymers and their use as stabilizers of Pd, Pt, and Rh nanoparticles.<br>Preliminary catalytic studies. Journal of Applied Polymer Science, 2007, 105, 2772-2782.                                                              | 1.3 | 20        |
| 90 | Phosphinooxazolines Derived from 3â€Aminoâ€1,2â€diols: Highly Efficient Modular <i>Pâ€N</i> Ligands.<br>Advanced Synthesis and Catalysis, 2007, 349, 2265-2278.                                                                                                 | 2.1 | 35        |

| #   | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Palladium Catalytic Species Containing Chiral Phosphites: Towards a Discrimination between<br>Molecular and Colloidal Catalysts. Advanced Synthesis and Catalysis, 2007, 349, 2459-2469.                                                                            | 2.1 | 68        |
| 92  | First Allylpalladium Systems Containing Chiral Imidazolylpyridine Ligands – Structural Studies and<br>Catalytic Behaviour. European Journal of Inorganic Chemistry, 2007, 2007, 132-139.                                                                            | 1.0 | 10        |
| 93  | The Spectroscopic, Electrochemical and Structural Characterization of a Family of Ru Complexes<br>Containing theC2-Symmetric Didentate Chiral 1,3-Oxazoline Ligand and Their Catalytic Activity.<br>European Journal of Inorganic Chemistry, 2007, 2007, 5207-5214. | 1.0 | 15        |
| 94  | Ionic liquids as a medium for enantioselective catalysis. Comptes Rendus Chimie, 2007, 10, 152-177.                                                                                                                                                                 | 0.2 | 104       |
| 95  | Synthesis, characterization and catalytic reactivity of ruthenium nanoparticles stabilized by chiral N-donor ligands. New Journal of Chemistry, 2006, 30, 115-122.                                                                                                  | 1.4 | 111       |
| 96  | Atropisomeric Discrimination in New Rull Complexes Containing theC2-Symmetric Didentate Chiral<br>Phenyl-1,2-bisoxazolinic Ligand. Chemistry - A European Journal, 2006, 12, 2798-2807.                                                                             | 1.7 | 30        |
| 97  | Ruthenium Complexes Containing Chiral N-Donor Ligands as Catalysts in Acetophenone Hydrogen<br>Transfer - New Amino Effect on Enantioselectivity. European Journal of Inorganic Chemistry, 2005,<br>2005, 4341-4351.                                                | 1.0 | 20        |
| 98  | Allylic Alkylations Catalyzed by Palladium Systems Containing Modular Chiral Dithioethers. A<br>Structural Study of the Allylic Intermediates. Organometallics, 2005, 24, 3946-3956.                                                                                | 1.1 | 34        |
| 99  | Kinetico–mechanistic studies of C–H bond activation on new Pd complexes containing N,N′-chelating<br>ligands. Dalton Transactions, 2005, , 123-132.                                                                                                                 | 1.6 | 39        |
| 100 | Influence of organic ligands on the stabilization of palladium nanoparticles. Journal of<br>Organometallic Chemistry, 2004, 689, 4601-4610.                                                                                                                         | 0.8 | 174       |
| 101 | Structural Studies of Mono- and Dimetallic MoVIComplexes â <sup>~?</sup> A New Mechanistic Contribution in<br>Catalytic Olefin Epoxidation Provided by Oxazoline Ligands. European Journal of Inorganic Chemistry,<br>2004, 2004, 4278-4285.                        | 1.0 | 78        |
| 102 | Exo- and Endocyclic Oxazolinyl—Phosphane Palladium Complexes: Catalytic Behavior in Allylic<br>Alkylation Processes ChemInform, 2004, 35, no.                                                                                                                       | 0.1 | 0         |
| 103 | Novel ferrocenyl-oxazoline ligands: first preparation of non-symmetrical bis(oxazoline). Polyhedron, 2004, 23, 611-616.                                                                                                                                             | 1.0 | 3         |
| 104 | Exo- and Endocyclic Oxazolinylâ^'Phosphane Palladium Complexes:Â Catalytic Behavior in Allylic<br>Alkylation Processes. Organometallics, 2004, 23, 3197-3209.                                                                                                       | 1.1 | 36        |
| 105 | A Case for Enantioselective Allylic Alkylation Catalyzed by Palladium Nanoparticles. Journal of the<br>American Chemical Society, 2004, 126, 1592-1593.                                                                                                             | 6.6 | 288       |
| 106 | Modular Bis(oxazoline) Ligands for Palladium-Catalyzed Allylic Alkylation: Unprecedented<br>Conformational Behavior of a Bis(oxazoline) Palladium η3-1,3-Diphenylallyl Complex ChemInform, 2003,<br>34, no.                                                         | 0.1 | 0         |
| 107 | Chiral thioether ligands: coordination chemistry and asymmetric catalysis. Coordination Chemistry Reviews, 2003, 242, 159-201.                                                                                                                                      | 9.5 | 202       |
| 108 | Novel super-structures resulting from the coordination of chiral oxazolines on platinum nanoparticles. New Journal of Chemistry, 2003, 27, 114-120.                                                                                                                 | 1.4 | 40        |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Bis(oxazoline) Ligands Containing Four and Five Spacer Atoms:  Palladium Complexes and Catalytic<br>Behavior. Organometallics, 2002, 21, 1077-1087.                                                                                    | 1.1 | 47        |
| 110 | Intramolecular Allyl Transfer Reaction from Allyl Ether to Aldehyde Groups: Experimental and<br>Theoretical Studies. Chemistry - A European Journal, 2002, 8, 664-672.                                                                 | 1.7 | 18        |
| 111 | Modular Bis(oxazoline) Ligands for Palladium Catalyzed Allylic Alkylation: Unprecedented<br>Conformational Behaviour of a Bis(oxazoline) Palladium 3-1,3-Diphenylallyl Complex. Chemistry - A<br>European Journal, 2002, 8, 4164-4178. | 1.7 | 78        |
| 112 | Catalytic reduction of acetophenone with transition metal systems containing chiral bis(oxazolines).<br>Journal of Organometallic Chemistry, 2002, 659, 186-195.                                                                       | 0.8 | 24        |
| 113 | Cyclopalladation of Nî—,N′ donor ligands: unusual dinuclear complexes and their solution behaviour.<br>Inorganic Chemistry Communication, 2002, 5, 67-70.                                                                              | 1.8 | 12        |
| 114 | Diphosphites as a promising new class of ligands in Pd-catalysed asymmetric allylic alkylation.<br>Chemical Communications, 2001, , 1132-1133.                                                                                         | 2.2 | 53        |
| 115 | Palladium complexes containing bis(oxazolines): stoichiometric versus catalytic allylic alkylation.<br>Dalton Transactions RSC, 2001, , 1432-1439.                                                                                     | 2.3 | 14        |
| 116 | Chiral S,S-donor ligands in palladium-catalysed allylic alkylation. Tetrahedron: Asymmetry, 2001, 12,<br>1469-1474.                                                                                                                    | 1.8 | 34        |
| 117 | First Dioxomolybdenum(VI) Complexes Containing Chiral Oxazoline Ligands: Synthesis,<br>Characterization and Catalytic Activity. European Journal of Inorganic Chemistry, 2001, 2001, 1071-1076.                                        | 1.0 | 55        |
| 118 | First Dioxomolybdenum(VI) Complexes Containing Chiral Oxazoline Ligands: Synthesis,<br>Characterization and Catalytic Activity. European Journal of Inorganic Chemistry, 2001, 2001, 1071-1076.                                        | 1.0 | 2         |
| 119 | Mechanisms of Cyclopalladation Reactions in Acetic Acid: Not So Simple One-Pot Processes. European<br>Journal of Inorganic Chemistry, 2000, 2000, 217-224.                                                                             | 1.0 | 45        |
| 120 | Palladium Complexes with Chiral Oxazoline Ligands. Effect of Chelate Size on Catalytic Allylic<br>Substitutions. Organometallics, 2000, 19, 966-978.                                                                                   | 1.1 | 40        |
| 121 | Electrochemical cleavage of allyl aryl ethers and allylation of carbonyl compounds: umpolung of allyl-palladium species. Tetrahedron Letters, 1999, 40, 5685-5688.                                                                     | 0.7 | 36        |
| 122 | Coordination chemistry of oxazoline ligands. Coordination Chemistry Reviews, 1999, 193-195, 769-835.                                                                                                                                   | 9.5 | 201       |
| 123 | New Chiral Tetradentate Oxazolinylphosphine Ligands for Nickel and Palladium. Coordination<br>Behavior and Catalytic Activity in Allylic Alkylations. Organometallics, 1999, 18, 4970-4981.                                            | 1.1 | 31        |
| 124 | Chiral bis(oxazoline) ligands. Synthesis of mono- and bi-metallic complexes of nickel and palladium.<br>Journal of the Chemical Society Dalton Transactions, 1998, , 4229-4236.                                                        | 1.1 | 26        |
| 125 | Solution behaviour, kinetics and mechanism of the acid-catalysed cyclopalladation of imines *. Journal of the Chemical Society Dalton Transactions, 1998, , 37-44.                                                                     | 1.1 | 99        |
| 126 | New Open Tetraaza Nickel(II) and Palladium(II) Complexes. Different Reactivity of the Electrogenerated<br>M(0) Species toward Difunctional Substrates. Organometallics, 1997, 16, 5900-5908.                                           | 1.1 | 18        |

| #   | Article                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Variable-Temperature and -Pressure Kinetics and Mechanism of the Cyclopalladation Reaction of Imines in Aprotic Solvent. Organometallics, 1997, 16, 2539-2546.                                                                                                                              | 1.1 | 146       |
| 128 | Synthesis and characterization of triazenido and amidino complexes of nickel and palladium.<br>Polyhedron, 1993, 12, 1171-1177.                                                                                                                                                             | 1.0 | 14        |
| 129 | Synthesis and characterization of bis(diphenylphosphino)methanide and -amide complexes of Nilland<br>Pdll. Crystal structure of [PdCl(Ph2PNPPh2)(PEt3)]. Journal of the Chemical Society Dalton<br>Transactions, 1993, , 221-225.                                                           | 1.1 | 11        |
| 130 | CHIRAL DIPHOSPHOLES 4. SYNTHESIS AND NMR STUDY OF PHOSPHOLYL-BASED OPTICALLY ACTIVE DIPHOSPHINES. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 85, 207-215.                                                                                                               | 0.8 | 8         |
| 131 | Cyclopalladation of N-mesitylbenzylideneamines. Aromatic versus aliphatic carbon-hydrogen bond activation. Organometallics, 1992, 11, 1536-1541.                                                                                                                                            | 1.1 | 120       |
| 132 | Synthesis and structures of tetranuclear 2-(dimethylamino)ethanethiolato complexes of zinc,<br>cadmium and mercury involving both primary and secondary metal–halogen bonding. Journal of the<br>Chemical Society Dalton Transactions, 1991, , 2511-2518.                                   | 1.1 | 16        |
| 133 | Trialkylphosphine-carbon disulfide adducts as eight-electron bridging ligands. X-ray structures of<br>dimanganese complex [Mn2(CO)6(.muS2CPCy3)] and [Mn2(CO)4(.muS2CPCy3)(.mudppm)].<br>Organometallics, 1991, 10, 1683-1692.                                                              | 1.1 | 36        |
| 134 | Stoichiometric model reactions in olefin hydroformylation by platinum-tin systems. Organometallics, 1991, 10, 4036-4045.                                                                                                                                                                    | 1.1 | 68        |
| 135 | Complexes with diimine ligands. Part III. Synthesis, structure and magnetic studies of mixed acetylacetonatecobalt(II) derivatives. Inorganica Chimica Acta, 1991, 181, 51-60.                                                                                                              | 1.2 | 35        |
| 136 | Crystal structure oftrans-ethyl(1,5,6-trimethylbenzimidazole)-bis(dimethylglyoximato)cobalt(III).<br>Relationships between structural and spectroscopic properties in compounds of the general<br>formulae [Co(dmgH)2(R)(1,5,6-Me3Bzm)]. Transition Metal Chemistry, 1991, 16, 176-180.     | 0.7 | 4         |
| 137 | Complexes with diimine ligands. Part II. Synthesis, structure and magnetic studies of mixed acetylacetonatenickel(II) derivatives. Inorganica Chimica Acta, 1990, 177, 161-166.                                                                                                             | 1.2 | 20        |
| 138 | [HFe(CO)4]â^' as a reagent for the synthesis of tin/iron clusters. Partial crystal structure of<br>(NEt4)2[SnCl2{Fe(CO)4}2]·SnCl4. Journal of Organometallic Chemistry, 1990, 381, 183-189.                                                                                                 | 0.8 | 9         |
| 139 | Synthesis and characterization of nickel(II) complexes of purine and pyrimidine bases. Crystal and molecular structure of trans-bis(cytosine-O2)bis(ethylenediamine)nickel(II) bis(tetraphenylborate). An unusual metal binding mode of cytosine. Inorganic Chemistry, 1990, 29, 5168-5173. | 1.9 | 52        |
| 140 | Five- and six-membered exo-cyclopalladated compounds of N-benzylideneamines. Synthesis and x-ray<br>crystal structure of [cyclic] [PdBr{p-MeOC6H3(CH2)2N:CH(2,6-Cl2C6H3)}(PPh3)] and<br>[PdBr{C6H4CH2N:CH(2,6-Cl2C6H3)}(PEt3)2]. Organometallics, 1990, 9, 1405-1413.                       | 1.1 | 154       |
| 141 | Ligand exchange reactions of N-donor ligands in cyclopalladated complexes. Journal of<br>Organometallic Chemistry, 1989, 361, 391-398.                                                                                                                                                      | 0.8 | 33        |