
Kate L Spencer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/776036/publications.pdf Version: 2024-02-01

KATE | SDENCED

#	Article	IF	CITATIONS
1	Vegetation interactions with geotechnical properties and erodibility of salt marsh sediments. Estuarine, Coastal and Shelf Science, 2022, 265, 107713.	0.9	11
2	Flocculation with heterogeneous composition in water environments: A review. Water Research, 2022, 213, 118147.	5.3	45
3	Quantification of 3-dimensional structure and properties of flocculated natural suspended sediment. Water Research, 2022, 222, 118835.	5.3	7
4	Resistance of salt marsh substrates to nearâ€instantaneous hydrodynamic forcing. Earth Surface Processes and Landforms, 2021, 46, 67-88.	1.2	21
5	Pore, live root and necromass quantification in complex heterogeneous wetland soils using X-ray computed tomography. Geoderma, 2021, 387, 114898.	2.3	14
6	Accumulation of trace metals in freshwater macroinvertebrates across metal contamination gradients. Environmental Pollution, 2021, 276, 116721.	3.7	7
7	Effect of vegetation cover and sediment type on 3D subsurface structure and shear strength in saltmarshes. Earth Surface Processes and Landforms, 2021, 46, 2279-2297.	1.2	15
8	A structure–function based approach to floc hierarchy and evidence for the non-fractal nature of natural sediment flocs. Scientific Reports, 2021, 11, 14012.	1.6	30
9	Coastal Landfills and Rising Sea Levels: A Challenge for the 21st Century. Frontiers in Marine Science, 2021, 8, .	1.2	27
10	Systematic Analysis of the Relative Abundance of Polymers Occurring as Microplastics in Freshwaters and Estuaries. International Journal of Environmental Research and Public Health, 2020, 17, 9304.	1.2	34
11	Will flooding or erosion of historic landfills result in a significant release of soluble contaminants to the coastal zone?. Science of the Total Environment, 2020, 724, 138150.	3.9	10
12	There is no such thing as â€~undisturbed' soil and sediment sampling: sampler-induced deformation of salt marsh sediments revealed by 3D X-ray computed tomography. Journal of Soils and Sediments, 2020, 20, 2960-2976.	1.5	9
13	Integrated and Sustainable Management of Post-industrial Coasts. Frontiers in Environmental Science, 2020, 8, .	1.5	23
14	Development of novel 2D and 3D correlative microscopy to characterise the composition and multiscale structure of suspended sediment aggregates. Continental Shelf Research, 2020, 200, 104112.	0.9	14
15	Coastal Landfills, Rising Sea Levels and Shoreline Management: A Challenge for the 21st Century. , 2020, , .		3
16	Potential contamination of the coastal zone by eroding historic landfills. Marine Pollution Bulletin, 2019, 146, 282-291.	2.3	14
17	A Model-Based Analysis of Metal Fate in the Thames Estuary. Estuaries and Coasts, 2019, 42, 1185-1201.	1.0	10
18	Sediment structure and physicochemical changes following tidal inundation at a large open coast managed realignment site. Science of the Total Environment, 2019, 660, 1419-1432.	3.9	15

KATE L SPENCER

#	Article	IF	CITATIONS
19	The contaminant legacy from historic coastal landfills and their potential as sources of diffuse pollution. Marine Pollution Bulletin, 2018, 128, 446-455.	2.3	37
20	Unravelling metal mobility under complex contaminant signatures. Science of the Total Environment, 2018, 622-623, 373-384.	3.9	25
21	Potential pollution risks of historic landfills on lowâ€lying coasts and estuaries. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1264.	2.8	41
22	Risk screening assessment for ranking historic coastal landfills by pollution risk. Anthropocene Coasts, 2018, 1, 44-61.	0.6	8
23	The Impact of Metal-Rich Sediments Derived from Mining on Freshwater Stream Life. Reviews of Environmental Contamination and Toxicology, 2018, 248, 111-189.	0.7	2
24	The impact of pre-restoration land-use and disturbance on sediment structure, hydrology and the sediment geochemical environment in restored saltmarshes. Science of the Total Environment, 2017, 587-588, 47-58.	3.9	40
25	The effects of sulfur amendments on the geochemistry of sulfur, phosphorus and iron in the mangrove plant (Kandelia obovata (S. L.)) rhizosphere. Marine Pollution Bulletin, 2017, 114, 733-741.	2.3	24
26	Unbounded boundaries and shifting baselines: Estuaries and coastal seas in a rapidly changing world. Estuarine, Coastal and Shelf Science, 2017, 198, 311-319.	0.9	31
27	Quantifying the Structure and Composition of Flocculated Suspended Particulate Matter Using Focused Ion Beam Nanotomography. Environmental Science & Technology, 2017, 51, 8917-8925.	4.6	24
28	Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Science of the Total Environment, 2016, 541, 268-281.	3.9	237
29	Modified sediments and subsurface hydrology in natural and recreated salt marshes and implications for delivery of ecosystem services. Hydrological Processes, 2015, 29, 2346-2357.	1.1	38
30	The role of vegetation in the retention of fine sediment and associated metal contaminants in London's rivers. Earth Surface Processes and Landforms, 2014, 39, 1115-1127.	1.2	6
31	Temporal and spatial distributions of sediment mercury in restored coastal saltmarshes. Marine Chemistry, 2014, 167, 150-159.	0.9	8
32	Potential contaminant release from agricultural soil and dredged sediment following managed realignment. Journal of Soils and Sediments, 2012, 12, 1581-1592.	1.5	6
33	Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes. Estuarine, Coastal and Shelf Science, 2012, 106, 23-32.	0.9	71
34	A novel tracer technique for the assessment of fine sediment dynamics in urban water management systems. Water Research, 2011, 45, 2595-2606.	5.3	21
35	Sediment characteristics of a restored saltmarsh and mudflat in a managed realignment scheme in Southeast England. Hydrobiologia, 2011, 672, 79-89.	1.0	17
36	An appraisal of microwave-assisted Tessier and BCR sequential extraction methods for the analysis of metals in sediments and soils. Journal of Soils and Sediments, 2011, 11, 518-528.	1.5	31

KATE L SPENCER

#	Article	IF	CITATIONS
37	The development of rare earth element-labelled potassium-depleted clays for use as cohesive sediment tracers in aquatic environments. Journal of Soils and Sediments, 2011, 11, 1052-1061.	1.5	9
38	Dynamic interactions between cohesive sediment tracers and natural mud. Journal of Soils and Sediments, 2010, 10, 1401-1414.	1.5	28
39	The distribution of acid-volatile sulfide and simultaneously extracted metals in sediments from a mangrove forest and adjacent mudflat in Zhangjiang Estuary, China. Marine Pollution Bulletin, 2010, 60, 1209-1216.	2.3	43
40	Physicochemical changes in sediments at Orplands Farm, Essex, UK following 8 years of managed realignment. Estuarine, Coastal and Shelf Science, 2008, 76, 608-619.	0.9	39
41	Sorption of lanthanum onto clay minerals: a potential tracer for fine sediment transport in the coastal marine environment?. Geological Society Special Publication, 2007, 274, 17-24.	0.8	8
42	Source and distribution of trace metals in the Medway and Swale estuaries, Kent, UK. Marine Pollution Bulletin, 2006, 52, 226-230.	2.3	18
43	Heavy metal distribution and accumulation in two Spartina spdominated macrotidal salt marshes from the Seine estuary (France) and the Medway estuary (UK). Applied Geochemistry, 2005, 20, 1195-1208.	1.4	41
44	Heavy metal distribution and early-diagenesis in salt marsh sediments from the Medway Estuary, Kent, UK. Estuarine, Coastal and Shelf Science, 2003, 57, 43-54.	0.9	108
45	Spatial variability of metals in the inter-tidal sediments of the Medway Estuary, Kent, UK. Marine Pollution Bulletin, 2002, 44, 933-944.	2.3	86