Yuya Kumagai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7760136/publications.pdf

Version: 2024-02-01

50	1,038	17 h-index	30
papers	citations		g-index
51	51	51	1123
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	ACE inhibitory effect of the protein hydrolysates prepared from commercially available nori product by pepsin–trypsin digestion. European Food Research and Technology, 2022, 248, 243-251.	3.3	7
2	A practical approach to producing isomaltomegalosaccharide using dextran dextrinase from Gluconobacter oxydans ATCC 11894. Applied Microbiology and Biotechnology, 2022, 106, 689-698.	3.6	2
3	Characterization of an Unknown Region Linked to the Glycoside Hydrolase Family $17\hat{l}^2$ -1,3-Glucanase of Vibrio vulnificus Reveals a Novel Glucan-Binding Domain. Marine Drugs, 2022, 20, 250.	4.6	4
4	Characterization of Antioxidant Activity of Heated Mycosporine-like Amino Acids from Red Alga Dulse Palmaria palmata in Japan. Marine Drugs, 2022, 20, 184.	4.6	5
5	Physicochemical functionality of chimeric isomaltomegalosaccharides with α-(1Â→Â4)-glucosidic segments of various lengths. Carbohydrate Polymers, 2022, 291, 119562.	10.2	2
6	Characterization of ACE Inhibitory Peptides Prepared from Pyropia pseudolinearis Protein. Marine Drugs, 2021, 19, 200.	4.6	19
7	Preparation of $\hat{l}^2(1\hat{a}\dagger^3)\hat{l}^2(1\hat{a}\dagger^4)$ xylooligosaccharides from red alga dulse by two xylanases from Streptomyces thermogriseus. Bioresources and Bioprocessing, 2021, 8, .	4.2	4
8	Study on the Mechanism of the Blood-Glucose-Lowering Effect of Collagen Peptides from Sturgeon By-Products. Marine Drugs, 2021, 19, 584.	4.6	4
9	Monthly Variation and Ultraviolet Stability of Mycosporine-like Amino Acids from Red Alga Dulse Palmaria palmata in Japan. Phycology, 2021, 1, 119-128.	3.6	7
10	Efficient Extraction and Antioxidant Capacity of Mycosporine-Like Amino Acids from Red Alga Dulse Palmaria palmata in Japan. Marine Drugs, 2020, 18, 502.	4.6	36
11	Identification of ACE inhibitory peptides from red alga Mazzaella japonica. European Food Research and Technology, 2020, 246, 2225-2231.	3.3	18
12	In Silico Analysis of ACE Inhibitory Peptides from Chloroplast Proteins of Red Alga Grateloupia asiatica. Marine Biotechnology, 2020, 22, 391-402.	2.4	13
13	Identification of a Key Enzyme for the Hydrolysis of \hat{l}^2 -(1â†'3)-Xylosyl Linkage in Red Alga Dulse Xylooligosaccharide from Bifidobacterium Adolescentis. Marine Drugs, 2020, 18, 174.	4.6	15
14	Complete sequence of mitochondrial DNA of <i>Gloiopeltis furcata</i> (Postels and Ruprecht) J. Agardh. Mitochondrial DNA Part B: Resources, 2019, 4, 2543-2544.	0.4	7
15	Complete sequence of mitochondrial DNA of red alga dulse <i>Palmaria palmata</i> (Linnaeus) Weber & amp; Mohr in Japan. Mitochondrial DNA Part B: Resources, 2019, 4, 3177-3178.	0.4	13
16	In Silico Analysis of Relationship between Proteins from Plastid Genome of Red Alga Palmaria sp. (Japan) and Angiotensin I Converting Enzyme Inhibitory Peptides. Marine Drugs, 2019, 17, 190.	4.6	23
17	Enzymatic production of xylooligosaccharides from red alga dulse (Palmaria sp.) wasted in Japan. Process Biochemistry, 2019, 82, 117-122.	3.7	26
18	Antioxidant activity of proteins extracted from red alga dulse harvested in Japan. Journal of Food Biochemistry, 2019, 43, e12709.	2.9	21

#	Article	IF	CITATIONS
19	Polysaccharide-Degrading Enzymes From Marine Gastropods. Methods in Enzymology, 2018, 605, 457-497.	1.0	20
20	Engineered dextranase from <i>Streptococcus mutans</i> enhances the production of longer isomaltooligosaccharides. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1480-1487.	1.3	19
21	Substrate recognition of the catalytic α-subunit of glucosidase II from <i>Schizosaccharomyces pombe</i> . Bioscience, Biotechnology and Biochemistry, 2017, 81, 1503-1511.	1.3	8
22	A novel glycoside hydrolase family 97 enzyme: Bifunctional \hat{l}^2 -l-arabinopyranosidase/ \hat{l} ±-galactosidase from Bacteroides thetaiotaomicron. Biochimie, 2017, 142, 41-50.	2.6	15
23	Effects of mutation of Asn694 in Aspergillus niger \hat{l} ±-glucosidase on hydrolysis and transglucosylation. Applied Microbiology and Biotechnology, 2017, 101, 6399-6408.	3.6	17
24	Megalo-type $\hat{l}\pm -1$,6-glucosaccharides induce production of tumor necrosis factor $\hat{l}\pm in$ primary macrophages via toll-like receptor 4 signaling . Biomedical Research, 2016, 37, 179-186.	0.9	4
25	Heat treatment of curdlan enhances the enzymatic production of biologically active \hat{l}^2 -(1,3)-glucan oligosaccharides. Carbohydrate Polymers, 2016, 146, 396-401.	10.2	32
26	Molecular insights into the mechanism of thermal stability of actinomycete mannanase. FEBS Letters, 2016, 590, 2862-2869.	2.8	6
27	The loop structure of <i>Actinomycete</i> glycoside hydrolase family 5 mannanases governs substrate recognition. FEBS Journal, 2015, 282, 4001-4014.	4.7	24
28	Biochemical properties and substrate recognition mechanism of GH31 \hat{l} ±-glucosidase from Bacillus sp. AHU 2001 with broad substrate specificity. Biochimie, 2015, 108, 140-148.	2.6	14
29	A laminaribiose-hydrolyzing enzyme, AkLab, from the common sea hare Aplysia kurodai and its transglycosylation activity. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2014, 167, 1-7.	1.6	12
30	Different molecular complexity of linear-isomaltomegalosaccharides and \hat{l}^2 -cyclodextrin on enhancing solubility of azo dye ethyl red: Towards dye biodegradation. Bioresource Technology, 2014, 169, 518-524.	9.6	16
31	Bp-6 Amphiphilic function of linear-isomaltomegalosaccharides (L-IMS) on ethyl red (ER) solubility. Bulletin of Applied Glycoscience, 2014, 4, B42.	0.0	0
32	Enzymatic Production of Ferulic Acid from Defatted Rice Bran by Using a Combination of Bacterial Enzymes. Applied Biochemistry and Biotechnology, 2013, 171, 1085-1093.	2.9	35
33	Effect of the binding of bivalent ion to the calcium-binding site responsible for the thermal stability of actinomycete mannanase: Potential use in production of functional mannooligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 2013, 94, 63-68.	1.8	5
34	A novel mechanism for the promotion of quercetin glycoside absorption by megalo $\hat{l}\pm -1,6$ -glucosaccharide in the rat small intestine. Food Chemistry, 2013, 136, 293-296.	8.2	30
35	Enzymatic properties and primary structures of two $\hat{I}\pm$ -amylase isozymes from the Pacific abalone Haliotis discus hannai. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2013, 164, 80-88.	1.6	15
36	Binding of bivalent ions to actinomycete mannanase is accompanied by conformational change and is a key factor in its thermal stability. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 301-307.	2.3	15

3

#	Article	IF	CITATION
37	The structural analysis and the role of calcium binding site for thermal stability in mannanase. Biochimie, 2012, 94, 2783-2790.	2.6	22
38	The Delay in the Development of Experimental Colitis from Isomaltosyloligosaccharides in Rats Is Dependent on the Degree of Polymerization. PLoS ONE, 2012, 7, e50658.	2.5	14
39	Preparation of hemicellulolic oligosaccharides from Chamaecyparis obtuse (Hinoki) slurry using commercial enzymes. Frontiers of Chemical Science and Engineering, 2012, 6, 224-231.	4.4	4
40	Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chemistry, 2012, 134, 797-802.	8.2	196
41	MS/MS fragmentation-guided search of TMG-chitooligomycins and their structure–activity relationship in specific l²-N-acetylglucosaminidase inhibition. Organic and Biomolecular Chemistry, 2011, 9, 2943.	2.8	18
42	Extracellular Production and Characterization of Two Streptomyces l-Asparaginases. Applied Biochemistry and Biotechnology, 2011, 163, 836-844.	2.9	30
43	Extracellular Production and Characterization of Streptomyces X-prolyl Dipeptidyl Aminopeptidase. Applied Biochemistry and Biotechnology, 2011, 164, 475-486.	2.9	10
44	Characterization of calcium ion sensitive region for \hat{l}^2 -Mannanase from Streptomyces thermolilacinus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1127-1133.	2.3	37
45	Synthesis of prolyl-hydroxyproline using prolyl aminopeptidase from Streptomyces aureofaciens TH-3. Process Biochemistry, 2011, 46, 1560-1564.	3.7	5
46	Isolation and characterization of two types of \hat{l}^2 -1,3-glucanases from the common sea hare Aplysia kurodai. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2010, 155, 138-144.	1.6	41
47	Comparative study on general properties of alginate lyases from some marine gastropod mollusks. Fisheries Science, 2009, 75, 755-763.	1.6	16
48	Enzymatic properties and the primary structure of a \hat{l}^2 -1,3-glucanase from the digestive fluid of the Pacific abalone Haliotis discus hannai. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2009, 154, 113-120.	1.6	36
49	Preparation of \hat{l}^2 -1,3-glucanase from scallop mid-gut gland drips and its use for production of novel heterooligosaccharides. Fisheries Science, 2008, 74, 1127-1136.	1.6	20
50	Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus	2.6	76