
Federica Accornero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7759998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The importance of <scp>RNA</scp> modifications: From cells to muscle physiology. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1700.	3.2	8
2	CCN2 participates in overload-induced skeletal muscle hypertrophy. Matrix Biology, 2022, 106, 1-11.	1.5	3
3	The m6A methyltransferase METTL3 regulates muscle maintenance and growth in mice. Nature Communications, 2022, 13, 168.	5.8	24
4	Altered Expression of Zonula occludens-1 Affects Cardiac Na+ Channels and Increases Susceptibility to Ventricular Arrhythmias. Cells, 2022, 11, 665.	1.8	3
5	BEX1 is a critical determinant of viral myocarditis. PLoS Pathogens, 2022, 18, e1010342.	2.1	0
6	Influenza virus replication in cardiomyocytes drives heart dysfunction and fibrosis. Science Advances, 2022, 8, eabm5371.	4.7	11
7	m6A RNA methylation: A dynamic regulator of cardiac muscle and extracellular matrix. Current Opinion in Physiology, 2022, , 100561.	0.9	2
8	Remodeling of the m6A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 2021, 151, 46-55.	0.9	24
9	Paracardial fat remodeling affects systemic metabolism through alcohol dehydrogenase 1. Journal of Clinical Investigation, 2021, 131, .	3.9	11
10	Microfibrillar-Associated Protein 4 Regulates Stress-Induced Cardiac Remodeling. Circulation Research, 2021, 128, 723-737.	2.0	16
11	Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1â€mediated calcium entry in heart failure. Journal of Cellular and Molecular Medicine, 2021, 25, 4637-4648.	1.6	3
12	Micro-dystrophin gene therapy prevents heart failure in an improved Duchenne muscular dystrophy cardiomyopathy mouse model. JCI Insight, 2021, 6, .	2.3	17
13	ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. Biology, 2021, 10, 346.	1.3	17
14	Thbs1 induces lethal cardiac atrophy through PERK-ATF4 regulated autophagy. Nature Communications, 2021, 12, 3928.	5.8	60
15	Viruses in the Heart: Direct and Indirect Routes to Myocarditis and Heart Failure. Viruses, 2021, 13, 1924.	1.5	12
16	Cardiac-derived TGF-Î ² 1 confers resistance to diet-induced obesity through the regulation of adipocyte size and function. Molecular Metabolism, 2021, 54, 101343.	3.0	4
17	Satellite Cell Depletion Disrupts Transcriptional Coordination and Muscle Adaptation to Exercise. Function, 2020, 2, zqaa033.	1.1	43
18	From canonical to modified nucleotides: balancing translation and metabolism. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 525-540.	2.3	6

Federica Accornero

#	Article	IF	CITATIONS
19	Epitranscriptomics in the Heart: a Focus on m6A. Current Heart Failure Reports, 2020, 17, 205-212.	1.3	14
20	Phase Separation and Disorder-to-Order Transition of Human Brain Expressed X-Linked 3 (hBEX3) in the Presence of Small Fragments of tRNA. Journal of Molecular Biology, 2020, 432, 2319-2348.	2.0	13
21	Optimized protocols for isolation, fixation, and flow cytometric characterization of leukocytes in ischemic hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H658-H666.	1.5	12
22	IFITM3 protects the heart during influenza virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18607-18612.	3.3	65
23	RNA epigenetics and cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2019, 129, 272-280.	0.9	25
24	Cardiovascular inflammation: RNA takes the lead. Journal of Molecular and Cellular Cardiology, 2019, 129, 247-256.	0.9	17
25	Mineralocorticoid Receptor Signaling Contributes to Normal Muscle Repair After Acute Injury. Frontiers in Physiology, 2019, 10, 1324.	1.3	9
26	Genetic manipulation of CCN2/CTGF unveils cellâ€specific ECMâ€remodeling effects in injured skeletal muscle. FASEB Journal, 2019, 33, 2047-2057.	0.2	38
27	The N ⁶ -Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy. Circulation, 2019, 139, 533-545.	1.6	279
28	βIV-Spectrin/STAT3 complex regulates fibroblast phenotype, fibrosis, and cardiac function. JCI Insight, 2019, 4, .	2.3	19
29	CTGF/CCN2 is an autocrine regulator of cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 2018, 121, 205-211.	0.9	94
30	At the heart of inter- and intracellular signaling: the intercalated disc. Biophysical Reviews, 2018, 10, 961-971.	1.5	28
31	TGF-β1 affects cell-cell adhesion in the heart in an NCAM1-dependent mechanism. Journal of Molecular and Cellular Cardiology, 2017, 112, 49-57.	0.9	27
32	BEX1 is an RNA-dependent mediator of cardiomyopathy. Nature Communications, 2017, 8, 1875.	5.8	33
33	STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2015, 87, 38-47.	0.9	97
34	Genetic Analysis of Connective Tissue Growth Factor as an Effector of Transforming Growth Factor β Signaling and Cardiac Remodeling. Molecular and Cellular Biology, 2015, 35, 2154-2164.	1.1	70
35	Enhanced Ca2+ influx from STIM1–Orai1 induces muscle pathology in mouse models of muscular dystrophy. Human Molecular Genetics, 2014, 23, 3706-3715.	1.4	52
36	Myofiber-specific inhibition of TGFβ signaling protects skeletal muscle from injury and dystrophic disease in mice. Human Molecular Genetics, 2014, 23, 6903-6915.	1.4	44

Federica Accornero

#	Article	IF	CITATIONS
37	Placental Growth Factor Regulates Cardiac Adaptation and Hypertrophy Through a Paracrine Mechanism. Circulation Research, 2011, 109, 272-280.	2.0	84
38	Placental Growth Factor as a Protective Paracrine Effector in the Heart. Trends in Cardiovascular Medicine, 2011, 21, 220-224.	2.3	27
39	Extracellular Signal-Regulated Kinases 1 and 2 Regulate the Balance Between Eccentric and Concentric Cardiac Growth. Circulation Research, 2011, 108, 176-183.	2.0	217
40	The mammalian CHORDâ€containing protein melusin is a stress response protein interacting with Hsp90 and Sgt1. FEBS Letters, 2008, 582, 1788-1794.	1.3	46
41	Altered melusin expression in the hearts of aortic stenosis patients. European Journal of Heart Failure, 2007, 9, 568-573.	2.9	15
42	Cardiac Overexpression of Melusin Protects From Dilated Cardiomyopathy Due to Long-Standing Pressure Overload. Circulation Research, 2005, 96, 1087-1094.	2.0	101