Jose S Torrecilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7759738/publications.pdf Version: 2024-02-01

LOSE S TOPPECILLA

#	Article	IF	CITATIONS
1	Density and Molar Volume Predictions Using COSMO-RS for Ionic Liquids. An Approach to Solvent Design. Industrial & Engineering Chemistry Research, 2007, 46, 6041-6048.	1.8	224
2	Artificial Sensing Intelligence with Silicon Nanowires for Ultraselective Detection in the Gas Phase. Nano Letters, 2014, 14, 933-938.	4.5	203
3	Silicon Nanowire Sensors Enable Diagnosis of Patients <i>via</i> Exhaled Breath. ACS Nano, 2016, 10, 7047-7057.	7.3	179
4	Thermophysical Properties of 1-Ethyl-3-methylimidazolium Ethylsulfate and 1-Butyl-3-methylimidazolium Methylsulfate Ionic Liquids. Journal of Chemical & Engineering Data, 2007, 52, 1979-1983.	1.0	155
5	Estimation of toxicity of ionic liquids in Leukemia Rat Cell Line and Acetylcholinesterase enzyme by principal component analysis, neural networks and multiple lineal regressions. Journal of Hazardous Materials, 2009, 164, 182-194.	6.5	142
6	A Highly Sensitive Diketopyrrolopyrroleâ€Based Ambipolar Transistor for Selective Detection and Discrimination of Xylene Isomers. Advanced Materials, 2016, 28, 4012-4018.	11.1	129
7	Volumetric, Transport and Surface Properties of [bmim][MeSO ₄] and [emim][EtSO ₄] Ionic Liquids As a Function of Temperature. Journal of Chemical & Engineering Data, 2008, 53, 1518-1522.	1.0	106
8	A quantum-chemical-based guide to analyze/quantify the cytotoxicity of ionic liquids. Green Chemistry, 2010, 12, 123-134.	4.6	95
9	Liquid–liquid equilibria for {hexane+benzene+1-ethyl-3-methylimidazolium ethylsulfate} at (298.2, 313.2) Tj E	TQq1 1 0.	784314 rgBT
10	A neural network approach for thermal/pressure food processing. Journal of Food Engineering, 2004, 62, 89-95.	2.7	89
11	Optimising an artificial neural network for predicting the melting point of ionic liquids. Physical Chemistry Chemical Physics, 2008, 10, 5826.	1.3	88
12	Effect of Relative Humidity of Air on Density, Apparent Molar Volume, Viscosity, Surface Tension, and Water Content of 1-Ethyl-3-methylimidazolium Ethylsulfate Ionic Liquid. Journal of Chemical & Engineering Data, 2008, 53, 923-928.	1.0	84
13	Development of an a Priori Ionic Liquid Design Tool. 1. Integration of a Novel COSMO-RS Molecular Descriptor on Neural Networks. Industrial & Engineering Chemistry Research, 2008, 47, 4523-4532.	1.8	79
14	Liquidâ^'Liquid Extraction of Toluene from Heptane Using 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Journal of Chemical & Engineering Data, 2011, 56, 113-118.	1.0	78
15	pH-Control System Based on Artificial Neural Networks. Industrial & Engineering Chemistry Research, 1998, 37, 2729-2740.	1.8	75
16	Effect of Cationic and Anionic Chain Lengths on Volumetric, Transport, and Surface Properties of 1-Alkyl-3-methylimidazolium Alkylsulfate Ionic Liquids at (298.15 and 313.15) K. Journal of Chemical & Engineering Data, 2009, 54, 1297-1301.	1.0	67
17	A COSMO-RS based guide to analyze/quantify the polarity of ionic liquids and their mixtures with organic cosolvents. Physical Chemistry Chemical Physics, 2010, 12, 1991.	1.3	67
18	Ternary Liquidâ°'Liquid Equilibria Measurement for Hexane and Benzene with the Ionic Liquid 1-Butyl-3-methylimidazolium Methylsulfate at <i>T</i> = (298.2, 313.2, and 328.2) K. Journal of Chemical & Engineering Data, 2010, 55, 258-261.	1.0	66

#	Article	IF	CITATIONS
19	A Novel Method To Quantify the Adulteration of Extra Virgin Olive Oil with Low-Grade Olive Oils by UVâ~'Vis. Journal of Agricultural and Food Chemistry, 2010, 58, 1679-1684.	2.4	65
20	Liquid–liquid extraction of toluene from n-heptane using binary mixtures of N-butylpyridinium tetrafluoroborate and N-butylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids. Chemical Engineering Journal, 2012, 180, 210-215.	6.6	65
21	Artificial neural networks: a promising tool to design and optimize high-pressure food processes. Journal of Food Engineering, 2005, 69, 299-306.	2.7	60
22	Development of an a Priori Ionic Liquid Design Tool. 2. Ionic Liquid Selection through the Prediction of COSMO-RS Molecular Descriptor by Inverse Neural Network. Industrial & Engineering Chemistry Research, 2009, 48, 2257-2265.	1.8	60
23	Separation of toluene and heptane by liquid–liquid extraction using z-methyl-N-butylpyridinium tetrafluoroborate isomers (z=2, 3, or 4) at T=313.2 K. Journal of Chemical Thermodynamics, 2010, 42, 1004-1008.	1.0	55
24	Estimation of the refractive indices of imidazolium-based ionic liquids using their polarisability values. Physical Chemistry Chemical Physics, 2014, 16, 128-134.	1.3	54
25	N-butylpyridinium bis-(trifluoromethylsulfonyl)imide ionic liquids as solvents for the liquid–liquid extraction of aromatics from their mixtures with alkanes: Isomeric effect of the cation. Fluid Phase Equilibria, 2011, 301, 62-66.	1.4	52
26	Liquidâ^'Liquid Equilibria for the Ternary Systems {Heptane + Toluene + <i>N</i> -Butylpyridinium Tetrafluoroborate or <i>N</i> -Hexylpyridinium Tetrafluoroborate} at <i>T</i> = 313.2 K. Journal of Chemical & Engineering Data, 2010, 55, 2862-2865.	1.0	51
27	Thermophysical Properties of 1-Ethyl-3-methylimidazolium 1,1,2,2-Tetrafluoroethanesulfonate and 1-Ethyl-3-methylimidazolium Ethylsulfate Ionic Liquids as a Function of Temperature. Journal of Chemical & Engineering Data, 2011, 56, 3589-3597.	1.0	48
28	Estimation with neural networks of the water content in imidazolium-based ionic liquids using their experimental density and viscosity values. Talanta, 2013, 113, 93-98.	2.9	45
29	Application of artificial neural network to the determination of phenolic compounds in olive oil mill wastewater. Journal of Food Engineering, 2007, 81, 544-552.	2.7	43
30	Exhaled Breath Markers for Nonimaging and Noninvasive Measures for Detection of Multiple Sclerosis. ACS Chemical Neuroscience, 2017, 8, 2402-2413.	1.7	43
31	Modeling the Drying of a High-Moisture Solid with an Artificial Neural Network. Industrial & Engineering Chemistry Research, 2005, 44, 8057-8066.	1.8	42
32	Quantification of Phenolic Compounds in Olive Oil Mill Wastewater by Artificial Neural Network/Laccase Biosensor. Journal of Agricultural and Food Chemistry, 2007, 55, 7418-7426.	2.4	41
33	Modelling of carbon dioxide solubility in ionic liquids at sub and supercritical conditions by neural networks and mathematical regressions. Chemometrics and Intelligent Laboratory Systems, 2008, 93, 149-159.	1.8	41
34	Optimization of an artificial neural network for thermal/pressure food processing: Evaluation of training algorithms. Computers and Electronics in Agriculture, 2007, 56, 101-110.	3.7	40
35	Self-organizing maps based on chaotic parameters to detect adulterations of extra virgin olive oil with inferior edible oils. Journal of Food Engineering, 2013, 118, 400-405.	2.7	40
36	Estimation of ternary liquid–liquid equilibria for arene/alkane/ionic liquid mixtures using neural networks. Physical Chemistry Chemical Physics, 2008, 10, 5114.	1.3	39

#	Article	IF	CITATIONS
37	Application of a Model Reference Adaptive Control System to pH Control. Effects of Lag and Delay Time. Industrial & Engineering Chemistry Research, 1996, 35, 4100-4110.	1.8	38
38	Optimization of an Artificial Neural Network by Selecting the Training Function. Application to Olive Oil Mills Waste. Industrial & Engineering Chemistry Research, 2008, 47, 7072-7080.	1.8	38
39	(Liquid+liquid) equilibria in the binary systems (aliphatic, or aromatic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf	50 667 Tc 1.0	l (hydrocar <mark>bo</mark> 37
40	Separation of toluene from n-heptane by liquid–liquid extraction using binary mixtures of [bpy][BF4] and [4bmpy][Tf2N] ionic liquids as solvent. Journal of Chemical Thermodynamics, 2012, 53, 119-124.	1.0	37
41	Sulfonate-Based Ionic Liquids in the Liquid–Liquid Extraction of Aromatic Hydrocarbons. Journal of Chemical & Engineering Data, 2011, 56, 3188-3193.	1.0	35
42	1-Alkyl-2,3-dimethylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids for the Liquid–Liquid Extraction of Toluene from Heptane. Journal of Chemical & Engineering Data, 2011, 56, 3468-3474.	1.0	34
43	Alkylsulfate-based ionic liquids in the liquid–liquid extraction of aromatic hydrocarbons. Journal of Chemical Thermodynamics, 2012, 45, 68-74.	1.0	34
44	Linking Chemical Parameters to Sensory Panel Results through Neural Networks To Distinguish Olive Oil Quality. Journal of Agricultural and Food Chemistry, 2014, 62, 10661-10665.	2.4	33
45	Cancerous glucose metabolism in lung cancer—evidence from exhaled breath analysis. Journal of Breath Research, 2016, 10, 026012.	1.5	33
46	Profiles of Volatile Biomarkers Detect Tuberculosis from Skin. Advanced Science, 2021, 8, e2100235.	5.6	31
47	Solvent Extraction of Toluene from Heptane with the Ionic LiquidsN-Ethylpyridinium Bis(trifluoromethylsulfonyl)imide andz-Methyl-N-ethylpyridinium Bis(trifluoromethylsulfonyl)imide (z= 2, 3, or 4) atT= 313.2 K. Journal of Chemical & Engineering Data, 2010, 55, 4937-4942.	1.0	30
48	Visible imaging to convolutionally discern and authenticate varieties of rice and their derived flours. Food Control, 2020, 110, 106971.	2.8	30
49	Cancer metabolism: the volatile signature of glycolysis— <i>in vitro</i> model in lung cancer cells. Journal of Breath Research, 2017, 11, 016008.	1.5	27
50	Machine Learning and Feature Selection Applied to SEER Data to Reliably Assess Thyroid Cancer Prognosis. Scientific Reports, 2020, 10, 5176.	1.6	27
51	Field determination of phenolic compounds in olive oil mill wastewater by artificial neural network. Biochemical Engineering Journal, 2008, 38, 171-179.	1.8	26
52	Prediction of gas solubilities in ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 17262.	1.3	26
53	Identifying and Quantifying Adulterants in Extra Virgin Olive Oil of the Picual Varietal by Absorption Spectroscopy and Nonlinear Modeling. Journal of Agricultural and Food Chemistry, 2015, 63, 5646-5652.	2.4	25
54	Quantification of adulterant agents in extra virgin olive oil by models based on its thermophysical properties. Journal of Food Engineering, 2011, 103, 211-218.	2.7	24

Jose S Torrecilla

#	Article	IF	CITATIONS
55	Neural networks to estimate the water content of imidazolium-based ionic liquids using their refractive indices. Talanta, 2013, 116, 122-126.	2.9	24
56	Artificial neural networks applied to fluorescence studies for accurate determination of N-butylpyridinium chloride concentration in aqueous solution. Sensors and Actuators B: Chemical, 2014, 198, 173-179.	4.0	24
57	Programmed Nanoparticles for Tailoring the Detection of Inflammatory Bowel Diseases and Irritable Bowel Syndrome Disease via Breathprint. Advanced Healthcare Materials, 2016, 5, 2339-2344.	3.9	24
58	Deep transfer learning to verify quality and safety of ground coffee. Food Control, 2021, 122, 107801.	2.8	24
59	Determination of 1-Ethyl-3-methylimidazolium Ethylsulfate Ionic Liquid and Toluene Concentration in Aqueous Solutions by Artificial Neural Network/UV Spectroscopy. Industrial & Engineering Chemistry Research, 2007, 46, 3787-3793.	1.8	23
60	(Liquid+liquid) equilibrium for the ternary systems {heptane+toluene+1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide} and {heptane+toluene+1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide} ionic liquids. Journal of Chemical Thermodynamics, 2011, 43, 1641-1645.	1.0	23
61	Neural network models to classify olive oils within the protected denomination of origin framework. International Journal of Food Science and Technology, 2013, 48, 2528-2534.	1.3	22
62	Laser diode induced excitation of PDO extra virgin olive oils for cognitive authentication and fraud detection. Sensors and Actuators B: Chemical, 2019, 280, 1-9.	4.0	22
63	Convolutional decoding of thermographic images to locate and quantify honey adulterations. Talanta, 2020, 209, 120500.	2.9	22
64	Neural Network Analysis of Spectroscopic Data of Lycopene and β-Carotene Content in Food Samples Compared to HPLC-UV-Vis. Journal of Agricultural and Food Chemistry, 2010, 58, 72-75.	2.4	21
65	Linear and non-linear modeling to identify vinegars in blends through spectroscopic data. LWT - Food Science and Technology, 2016, 65, 565-571.	2.5	21
66	Improvement of fluidized-bed dryers for drying solid waste (olive pomace) in olive oil mills. European Journal of Lipid Science and Technology, 2006, 108, 913-924.	1.0	20
67	Prediction of non-ideal behavior of polarity/polarizability scales of solvent mixtures by integration of a novel COSMO-RS molecular descriptor and neural networks. Physical Chemistry Chemical Physics, 2008, 10, 5967.	1.3	20
68	Viscosity estimation of binary mixtures of ionic liquids through a multi-layer perceptron model. Journal of Industrial and Engineering Chemistry, 2015, 21, 1350-1353.	2.9	20
69	Neural networks applied to characterize blends containing refined and extra virgin olive oils. Talanta, 2016, 161, 304-308.	2.9	20
70	Linear and non linear chemometric models to quantify the adulteration of extra virgin olive oil. Talanta, 2010, 83, 404-409.	2.9	19
71	Deep thermal imaging to compute the adulteration state of extra virgin olive oil. Computers and Electronics in Agriculture, 2020, 171, 105290.	3.7	19
72	The Initial Freezing Temperature of Foods at High Pressure. Critical Reviews in Food Science and Nutrition, 2008, 48, 328-340.	5.4	18

#	Article	IF	CITATIONS
73	Honey exposed to laser-induced breakdown spectroscopy for chaos-based botanical classification and fraud assessment. Chemometrics and Intelligent Laboratory Systems, 2020, 199, 103939.	1.8	18
74	Solving the Spectroscopy Interference Effects of β-Carotene and Lycopene by Neural Networks. Journal of Agricultural and Food Chemistry, 2008, 56, 6261-6266.	2.4	17
75	Characterization of an array of honeys of different types and botanical origins through fluorescence emission based on LEDs. Talanta, 2018, 185, 196-202.	2.9	17
76	Radial basis network analysis of color parameters to estimate lycopene content on tomato fruits. Talanta, 2010, 83, 9-13.	2.9	16
77	Neural networks applied to determine the thermophysical properties of amino acid based ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 7435-7441.	1.3	16
78	Thermal imaging of rice grains and flours to design convolutional systems to ensure quality and safety. Food Control, 2021, 121, 107572.	2.8	15
79	A neural network approach based on goldâ€nanoparticle enzyme biosensor. Journal of Chemometrics, 2008, 22, 46-53.	0.7	14
80	Non-linear models applied to experimental spectroscopical quantitative analysis of aqueous ternary mixtures of imidazolium and pyridinium-based ionic liquids. Sensors and Actuators B: Chemical, 2015, 206, 139-145.	4.0	14
81	Linear and non-linear quantification of extra virgin olive oil, soybean oil, and sweet almond oil in blends to assess their commercial labels. Journal of Food Composition and Analysis, 2019, 75, 70-74.	1.9	14
82	Spectroscopic determination of the photodegradation of monovarietal extra virgin olive oils and their binary mixtures through intelligent systems. Talanta, 2015, 144, 363-368.	2.9	13
83	Low requirement imaging enables sensitive and robust rice adulteration quantification via transfer learning. Food Control, 2021, 127, 108122.	2.8	13
84	Self-Organizing Maps and Learning Vector Quantization Networks As Tools to Identify Vegetable Oils. Journal of Agricultural and Food Chemistry, 2009, 57, 2763-2769.	2.4	12
85	The accurate estimation of physicochemical properties of ternary mixtures containing ionic liquids via artificial neural networks. Physical Chemistry Chemical Physics, 2015, 17, 4533-4537.	1.3	12
86	Quantifying binary and ternary mixtures of monovarietal extra virgin olive oils with UV–vis absorption and chemometrics. Sensors and Actuators B: Chemical, 2016, 234, 115-121.	4.0	12
87	Application of lag-k autocorrelation coefficient and the TGA signals approach to detecting and quantifying adulterations of extra virgin olive oil with inferior edible oils. Analytica Chimica Acta, 2011, 688, 140-145.	2.6	11
88	Radial basis network analysis to estimate lycopene degradation kinetics in tomato-based products. Food Research International, 2012, 49, 453-458.	2.9	11
89	Current Applications of Artificial Neural Networks in Biochemistry with Emphasis on Cancer Research. Current Biochemical Engineering, 2013, 1, 25-34.	1.3	11
90	Inputting molecular weights into a multilayer perceptron to estimate refractive indices of dialkylimidazolium-based ionic liquids—A purity evaluation. Applied Soft Computing Journal, 2015, 28, 394-399.	4.1	11

Jose S Torrecilla

#	Article	IF	CITATIONS
91	Chaotic parameters from fluorescence spectra to resolve fraudulent mixtures of fresh and expired protected designation of origin extra virgin olive oils. Talanta, 2019, 195, 1-7.	2.9	11
92	Principal Component Analysis/UV Spectroscopy for the Determination of 1-Ethyl-3-methylimidazolium Ethylsulfate Ionic Liquid and Toluene Concentrations in Aqueous Solutions. Industrial & Engineering Chemistry Research, 2008, 47, 4025-4028.	1.8	10
93	Chaotic parameters and their role in quantifying noise in the output signals from UV, TGA and DSC apparatus. Talanta, 2009, 79, 665-668.	2.9	10
94	Self-organizing maps and learning vector quantization networks as tools to identify vegetable oils and detect adulterations of extra virgin olive oil. Computer Aided Chemical Engineering, 2010, 28, 313-318.	0.3	10
95	Cognitive fluorescence sensing to monitor the storage conditions and locate adulterations of extra virgin olive oil. Food Control, 2019, 103, 48-58.	2.8	10
96	Boiling Points of Ternary Azeotropic Mixtures Modeled with the Use of the Universal Solvation Equation and Neural Networks. Industrial & Engineering Chemistry Research, 2012, 51, 9123-9128.	1.8	9
97	Determination of Physicochemical Properties of Pyridinium-Based Ionic Liquid Binary Mixtures with a Common Component through Neural Networks. Industrial & Engineering Chemistry Research, 2014, 53, 1015-1019.	1.8	9
98	Intelligent modelling to monitor the evolution of quality of extra virgin olive oil in simulated distribution conditions. Biosystems Engineering, 2018, 172, 49-56.	1.9	9
99	Cognitive chaos on spectrofluorometric data to quantitatively unmask adulterations of a PDO vinegar. Food Control, 2020, 108, 106860.	2.8	9
100	Is my food safe? – AI-based classification of lentil flour samples with trace levels of gluten or nuts. Food Chemistry, 2022, 386, 132832.	4.2	9
101	Hazardous aromatic VOC quantification through spectroscopic analysis and intelligent modeling to assess drinking water quality. Chemometrics and Intelligent Laboratory Systems, 2016, 156, 102-107.	1.8	8
102	Determination of Toluene, <i>n-</i> Heptane, [emim][EtSO ₄], and [bmim][MeSO ₄] Ionic Liquids Concentrations in Quaternary Mixtures by UVâ^'vis Spectroscopy. Industrial & Engineering Chemistry Research, 2009, 48, 4998-5003.	1.8	7
103	Phenolic Compounds in Olive Oil Mill Wastewater. , 2010, , 357-365.		7
104	Combination of LEDs and cognitive modeling to quantify sheep cheese whey in watercourses. Talanta, 2019, 203, 290-296.	2.9	7
105	The ability of spectrum autocorrelation models to predict the lycopene concentration in foods through visible spectroscopic data. Talanta, 2011, 85, 2479-2483.	2.9	6
106	Neural networks to Estimate Physicochemical Properties of Choline Carboxylate Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2016, 4, 536-540.	3.2	6
107	Convolutional capture of the expansion of extra virgin olive oil droplets to quantify adulteration. Food Chemistry, 2022, 368, 130765.	4.2	6
108	On-site images taken and processed to classify olives according to quality – The foundation of a high-grade olive oil. Postharvest Biology and Technology, 2018, 140, 60-66.	2.9	5

#	Article	IF	CITATIONS
109	Editorial: Artificial Intelligence in Chemistry. Frontiers in Chemistry, 2020, 8, 275.	1.8	5
110	Single-digit ppm quantification of melamine in powdered milk driven by computer vision. Food Control, 2022, 131, 108424.	2.8	5
111	Distinct thermal patterns to detect and quantify trace levels of wheat flour mixed into ground chickpeas. Food Chemistry, 2022, 384, 132468.	4.2	4
112	Design and optimisation of a filter based on neural networks. Application to reduce noise in experimental measurement by TGA of thermal degradation of 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid. Sensors and Actuators B: Chemical, 2008, 133, 426-434.	4.0	3
113	lonic liquids: Determination of their aqueous content using differential scanning calorimeter equipment, chaotic parameters and a radial basis network model. Talanta, 2010, 81, 1766-1771.	2.9	3
114	Conductivity of Ionic Liquids: A Neural Network Approach. Industrial & Engineering Chemistry Research, 2015, 54, 55-58.	1.8	3
115	Algorithmic modeling of spectroscopic data to quantify binary mixtures of vinegars of different botanical origins. Analytical Methods, 2016, 8, 2786-2793.	1.3	3
116	Thinking-Based Learning at Higher Education Levels: Implementation and Outcomes within a Chemical Engineering Class. Journal of Chemical Education, 2021, 98, 774-781.	1.1	3
117	Chaotic parameters extracted from fluorescence spectra to quantify sheep cheese whey in natural bodies of water. Talanta, 2018, 190, 269-277.	2.9	2
118	Exposing adulteration of Muscatel wines and assessing its distribution chain with fluorescence via intelligent and chaotic networks. Food Control, 2020, 118, 107428.	2.8	2
119	Application of artificial neural networks as a tool for moisture prediction in microbially colonized halite in the Atacama Desert. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1018-1026.	1.3	1
120	Detection of adulterations of extra-virgin olive oil by means of infrared thermography. , 2021, , 79-84.		1
121	UNIVERSITY STUDENTS DEVELOPING IMAGINATIVE PROBLEM SOLVING SKILLS — THE CASE OF FOOD ENGINEERING. , 0, , .		1
122	Standard photographs convolutionally processed to indirectly detect gluten in chickpea flour. Journal of Food Composition and Analysis, 2022, 110, 104547.	1.9	1
123	Design and Optimization of a Filter Based on Artificial Neural Network Applied to a Distillation Column. Chemical Product and Process Modeling, 2008, 3, .	0.5	0
124	Modelling of Hydrocarbon Solubility in Isomeric Ionic Liquids Using Mathematical Regressions. Separation Science and Technology, 2012, 47, 392-398.	1.3	0
125	Rebuttal to "Comments on "Boiling Points of Ternary Azeotropic Mixtures Modeled with the Use of the Universal Solvation Equation and Neural Networks'― Industrial & Engineering Chemistry Research, 2012, , 121226133830001.	1.8	0
126	Sensors: A Highly Sensitive Diketopyrrolopyrroleâ€Based Ambipolar Transistor for Selective Detection and Discrimination of Xylene Isomers (Adv. Mater. 21/2016). Advanced Materials, 2016, 28, 4163-4163.	11.1	0

#	Article	IF	CITATIONS
127	Intelligent real-time quantification of cheese whey in rivers and reservoirs in Madrid (Spain). Sensors and Actuators B: Chemical, 2019, 298, 126895.	4.0	0
128	Phenolic compounds in olive oil mill wastewater. , 2021, , 693-700.		0
129	Influence of the distribution chain on the quality of extra virgin olive oils. , 2021, , 85-90.		Ο
130	Service-learning - Diagnostic technologies presented by Ph.D. students to help socially neglected people during the SARS-CoV-2 pandemic. , 0, , .		0
131	Spectroscopy to evaluate the quality control of extra-virgin olive oils. , 2021, , 91-97.		0
132	Service-learning by PhD students to aid socially neglected people. , 0, , .		0