
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7759656/publications.pdf Version: 2024-02-01

ΠΟΝΑΤ ΚΑΩΩΟΕΙ

#	Article	IF	CITATIONS
1	BAG3 is a negative regulator of ciliogenesis in glioblastoma and tripleâ€negative breast cancer cells. Journal of Cellular Biochemistry, 2022, 123, 77-90.	1.2	8
2	STAT3 Enhances Sensitivity of Clioblastoma to Drug-Induced Autophagy-Dependent Cell Death. Cancers, 2022, 14, 339.	1.7	6
3	When lipid homeostasis runs havoc: Lipotoxicity links lysosomal dysfunction to autophagy. Matrix Biology, 2021, 100-101, 99-117.	1.5	7
4	ATF4 links ER stress with reticulophagy in glioblastoma cells. Autophagy, 2021, 17, 2432-2448.	4.3	66
5	Organelle-specific mechanisms of drug-induced autophagy-dependent cell death. Matrix Biology, 2021, 100-101, 54-64.	1.5	13
6	BRAT1 Impairs DNA Damage Repair in Glioblastoma Cell Lines. Medical Sciences Forum, 2021, 3, 3.	0.5	1
7	Autophagy activation, lipotoxicity and lysosomal membrane permeabilization synergize to promote pimozide- and loperamide-induced glioma cell death. Autophagy, 2021, 17, 3424-3443.	4.3	39
8	A New Pentafluorothio-Substituted Curcuminoid with Superior Antitumor Activity. Biomolecules, 2021, 11, 947.	1.8	6
9	Dexamethasone Treatment Limits Efficacy of Radiation, but Does Not Interfere With Glioma Cell Death Induced by Tumor Treating Fields. Frontiers in Oncology, 2021, 11, 715031.	1.3	7
10	Calcitriol Promotes Differentiation of Glioma Stem-Like Cells and Increases Their Susceptibility to Temozolomide. Cancers, 2021, 13, 3577.	1.7	12
11	Autophagy inhibition reinforces stemness together with exit from dormancy of polydisperse glioblastoma stem cells. Aging, 2021, 13, 18106-18130.	1.4	11
12	Glioblastoma Tissue Slice Tandem-Cultures for Quantitative Evaluation of Inhibitory Effects on Invasion and Growth. Cancers, 2020, 12, 2707.	1.7	6
13	STF-62247 and pimozide induce autophagy and autophagic cell death in mouse embryonic fibroblasts. Scientific Reports, 2020, 10, 687.	1.6	6
14	At the Crossroads of Apoptosis and Autophagy: Multiple Roles of the Co-Chaperone BAG3 in Stress and Therapy Resistance of Cancer. Cells, 2020, 9, 574.	1.8	42
15	Concomitant targeting of Hedgehog signaling and MCL-1 synergistically induces cell death in Hedgehog-driven cancer cells. Cancer Letters, 2019, 465, 1-11.	3.2	7
16	Autophagy in Cancer Cell Death. Biology, 2019, 8, 82.	1.3	62
17	Therapeutic Targeting of Stat3 Using Lipopolyplex Nanoparticle-Formulated siRNA in a Syngeneic Orthotopic Mouse Glioma Model. Cancers, 2019, 11, 333.	1.7	22
18	Arsenic Trioxide and (â^')-Gossypol Synergistically Target Glioma Stem-Like Cells via Inhibition of Hedgehog and Notch Signaling. Cancers, 2019, 11, 350.	1.7	29

#	Article	IF	CITATIONS
19	System-based approaches as prognostic tools for glioblastoma. BMC Cancer, 2019, 19, 1092.	1.1	9
20	Inhibition of PIM1 blocks the autophagic flux to sensitize glioblastoma cells to ABT-737-induced apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 175-189.	1.9	17
21	BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells. Neoplasia, 2018, 20, 263-279.	2.3	71
22	Pro-survival autophagy and cancer cell resistance to therapy. Cancer and Metastasis Reviews, 2018, 37, 749-766.	2.7	116
23	A novel role of the mitochondrial permeability transition pore in (â^')-gossypol-induced mitochondrial dysfunction. Mechanisms of Ageing and Development, 2018, 170, 45-58.	2.2	31
24	Nanoparticle/siRNA-based therapy strategies in glioma: which nanoparticles, which siRNAs?. Nanomedicine, 2018, 13, 89-103.	1.7	28
25	Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells. Cell Death and Disease, 2018, 9, 994.	2.7	49
26	AT 101 induces early mitochondrial dysfunction and HMOX1 (heme oxygenase 1) to trigger mitophagic cell death in glioma cells. Autophagy, 2018, 14, 1693-1709.	4.3	79
27	A Novel Cellular Spheroid-Based Autophagy Screen Applying Live Fluorescence Microscopy Identifies Nonactin as a Strong Inducer of Autophagosomal Turnover. SLAS Discovery, 2017, 22, 558-570.	1.4	13
28	Topotecan is a potent inhibitor of SUMOylation in glioblastoma multiforme and alters both cellular replication and metabolic programming. Scientific Reports, 2017, 7, 7425.	1.6	28
29	Interference with the HSF1/HSP70/BAG3 Pathway Primes Glioma Cells to Matrix Detachment and BH3 Mimetic–Induced Apoptosis. Molecular Cancer Therapeutics, 2017, 16, 156-168.	1.9	57
30	Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences. Frontiers in Molecular Neuroscience, 2017, 10, 3.	1.4	21
31	Autophagy-associated proteins BAG3 and p62 in testicular cancer. Oncology Reports, 2016, 35, 1629-1635.	1.2	12
32	AT-101 simultaneously triggers apoptosis and a cytoprotective type of autophagy irrespective of expression levels and the subcellular localization of Bcl-xL and Bcl-2 in MCF7 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 499-509.	1.9	15
33	Modulation of BAG3 Expression and Proteasomal Activity by sAPPα Does Not Require Membrane-Tethered Holo-APP. Molecular Neurobiology, 2016, 53, 5985-5994.	1.9	6
34	Patient-derived glioblastoma cells show significant heterogeneity in treatment responses to the inhibitor-of-apoptosis-protein antagonist birinapant. British Journal of Cancer, 2016, 114, 188-198.	2.9	16
35	Knockdown of BAG3 sensitizes bladder cancer cells to treatment with the BH3 mimetic ABT-737. World Journal of Urology, 2016, 34, 197-205.	1.2	15
36	Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget, 2016, 7, 20016-20032.	0.8	32

#	Article	IF	CITATIONS
37	The Cleavage Product of Amyloid-β Protein Precursor sAβPPα Modulates BAG3-Dependent Aggresome Formation and Enhances Cellular Proteasomal Activity. Journal of Alzheimer's Disease, 2015, 44, 879-896.	1.2	23
38	Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme. Frontiers in Neuroscience, 2015, 9, 218.	1.4	96
39	Chemoresistance is associated with increased cytoprotective autophagy and diminished apoptosis in bladder cancer cells treated with the BH3 mimetic (â^')-Gossypol (AT-101). BMC Cancer, 2015, 15, 224.	1.1	64
40	Sorafenib Sensitizes Glioma Cells to the BH3 Mimetic ABT-737 by Targeting MCL1 in a STAT3-Dependent Manner. Neoplasia, 2015, 17, 564-573.	2.3	39
41	Lovastatin and perillyl alcohol inhibit glioma cell invasion, migration, and proliferation – Impact of Ras-/Rho-prenylation. Pharmacological Research, 2015, 91, 69-77.	3.1	56
42	Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging – Impact of Bcl-2 and NPD-1 like metabolites. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 92, 23-31.	1.0	81
43	Modulation of Mcl-1 sensitizes glioblastoma to TRAIL-induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 629-642.	2.2	42
44	Amyloid Beta A4 Precursor Protein-binding Family B Member 1 (FE65) Interactomics Revealed Synaptic Vesicle Glycoprotein 2A (SV2A) and Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2 (SERCA2) as New Binding Proteins in the Human Brain. Molecular and Cellular Proteomics, 2014, 13, 475-488.	2.5	31
45	Quantifying the Autophagy-Triggering Effects of Drugs in Cell Spheroids with Live Fluorescence Microscopy. Methods in Molecular Biology, 2014, 1165, 19-29.	0.4	7
46	Hypoxia Enhances the Antiglioma Cytotoxicity of B10, a Glycosylated Derivative of Betulinic Acid. PLoS ONE, 2014, 9, e94921.	1.1	13
47	STAT3 silencing inhibits glioma single cell infiltration and tumor growth. Neuro-Oncology, 2013, 15, 840-852.	0.6	57
48	Antiâ€tissue factor (<scp>TF9â€10H10</scp>) treatment reduces tumor cell invasiveness in a novel migratory glioma model. Neuropathology, 2013, 33, 515-525.	0.7	13
49	Cytoprotective functions of amyloid precursor protein family members in stress signaling and aging. Molecular Neurodegeneration, 2013, 8, P26.	4.4	0
50	lsocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1416-1425.	2.2	62
51	Activation of executioner caspases is a predictor of progression-free survival in glioblastoma patients: a systems medicine approach. Cell Death and Disease, 2013, 4, e629-e629.	2.7	43
52	A Functional Yeast Survival Screen of Tumor-Derived cDNA Libraries Designed to Identify Anti-Apoptotic Mammalian Oncogenes. PLoS ONE, 2013, 8, e64873.	1.1	17
53	The APP intracellular domain (AICD) potentiates ER stress-induced apoptosis. Neurobiology of Aging, 2012, 33, 2200-2209.	1.5	33
54	Roles of amyloid precursor protein family members in neuroprotection, stress signaling and aging. Experimental Brain Research, 2012, 217, 471-479.	0.7	79

#	Article	IF	CITATIONS
55	Liposome-incorporated DHA increases neuronal survival by enhancing non-amyloidogenic APP processing. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 236-243.	1.4	75
56	Knockdown of TFPI-2 promotes migration and invasion of glioma cells. Neuroscience Letters, 2011, 497, 49-54.	1.0	36
57	Inhibition of the JAK-2/STAT3 signaling pathway impedes the migratory and invasive potential of human glioblastoma cells. Journal of Neuro-Oncology, 2011, 101, 393-403.	1.4	112
58	Bone Morphogenetic Protein 3 Controls Insulin Gene Expression and Is Down-regulated in INS-1 Cells Inducibly Expressing a Hepatocyte Nuclear Factor 1A–Maturity-onset Diabetes of the Young Mutation. Journal of Biological Chemistry, 2011, 286, 25719-25728.	1.6	17
59	The nontoxic natural compound Curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas. BMC Cancer, 2010, 10, 491.	1.1	120
60	The Pan-Bcl-2 Inhibitor (â^')-Gossypol Triggers Autophagic Cell Death in Malignant Glioma. Molecular Cancer Research, 2010, 8, 1002-1016.	1.5	169
61	Dietary Curcumin Attenuates Glioma Growth in a Syngeneic Mouse Model by Inhibition of the JAK1,2/STAT3 Signaling Pathway. Clinical Cancer Research, 2010, 16, 5781-5795.	3.2	120
62	The pro-migratory and pro-invasive role of the procoagulant tissue factor in malignant gliomas. Cell Adhesion and Migration, 2010, 4, 515-522.	1.1	13
63	sAPPα antagonizes dendritic degeneration and neuron death triggered by proteasomal stress. Molecular and Cellular Neurosciences, 2010, 44, 386-393.	1.0	62
64	Inhibition of tissue factor/protease-activated receptor-2 signaling limits proliferation, migration and invasion of malignant glioma cells. Neuroscience, 2010, 165, 1312-1322.	1.1	56
65	Enhanced vulnerability of PARK6 patient skin fibroblasts to apoptosis induced by proteasomal stress. Neuroscience, 2010, 166, 422-434.	1.1	39
66	Therapeutic Exploitation of Apoptosis and Autophagy for Glioblastoma. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 438-449.	0.9	50
67	Bid and Calpains Cooperate to Trigger Oxaliplatin-Induced Apoptosis of Cervical Carcinoma HeLa Cells. Molecular Pharmacology, 2009, 76, 998-1010.	1.0	18
68	The interaction of beta-amyloid protein with cellular membranes stimulates its own production. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 964-972.	1.4	78
69	Pharmacological inhibition of Bcl-2 family members reactivates TRAIL-induced apoptosis in malignant glioma. Journal of Neuro-Oncology, 2008, 86, 265-272.	1.4	69
70	Upregulation of DR5 by proteasome inhibitors potently sensitizes glioma cells to TRAILâ€induced apoptosis. FEBS Journal, 2008, 275, 1925-1936.	2.2	45
71	Parkinson patient fibroblasts show increased alpha-synuclein expression. Experimental Neurology, 2008, 212, 307-313.	2.0	78
72	BH3 Mimetics Reactivate Autophagic Cell Death in Anoxia-Resistant Malignant Glioma Cells. Neoplasia, 2008, 10, 873-885.	2.3	24

#	Article	IF	CITATIONS
73	Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin?. Autophagy, 2008, 4, 422-426.	4.3	122
74	Bid Participates in Genotoxic Drug-Induced Apoptosis of HeLa Cells and Is Essential for Death Receptor Ligands' Apoptotic and Synergistic Effects. PLoS ONE, 2008, 3, e2844.	1.1	24
75	Modulation of Gene Expression and Cytoskeletal Dynamics by the Amyloid Precursor Protein Intracellular Domain (AICD). Molecular Biology of the Cell, 2007, 18, 201-210.	0.9	120
76	Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene, 2007, 26, 1681-1692.	2.6	91
77	The amyloid precursor protein potentiates CHOP induction and cell death in response to ER Ca2+ depletion. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 157-165.	1.9	39
78	Coincident enrichment of phosphorylated lκBα, activated IKK, and phosphorylated p65 in the axon initial segment of neurons. Molecular and Cellular Neurosciences, 2006, 33, 68-80.	1.0	49
79	Active secretion of S100B from astrocytes during metabolic stress. Neuroscience, 2006, 141, 1697-1701.	1.1	106
80	Induction of transcription factor CEBP homology protein mediates hypoglycaemia-induced necrotic cell death in human neuroblastoma cells. Journal of Neurochemistry, 2006, 99, 952-964.	2.1	13
81	Regulation of gene expression by the amyloid precursor protein: inhibition of the JNK/c-Jun pathway. Cell Death and Differentiation, 2005, 12, 1-9.	5.0	58
82	TGF-β1 activates two distinct type I receptors in neurons. Journal of Cell Biology, 2005, 168, 1077-1086.	2.3	113
83	Neuronal Apoptosis: BH3-Only Proteins the Real Killers?. Journal of Bioenergetics and Biomembranes, 2004, 36, 295-298.	1.0	28
84	S100B potently activates p65/c-Rel transcriptional complexes in hippocampal neurons: Clinical implications for the role of S100B in excitotoxic brain injury. Neuroscience, 2004, 127, 913-920.	1.1	76
85	The amyloid precursor protein protects PC12 cells against endoplasmic reticulum stress-induced apoptosis. Journal of Neurochemistry, 2003, 87, 248-256.	2.1	57
86	Mitochondrial Membrane Permeabilization and Superoxide Production during Apoptosis. Journal of Biological Chemistry, 2003, 278, 12645-12649.	1.6	58
87	Gene expression during ER stress–induced apoptosis in neurons. Journal of Cell Biology, 2003, 162, 587-597.	2.3	343
88	Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: a single-cell analysis. Journal of Cell Science, 2003, 116, 525-536.	1.2	102
89	Dominant-negative Suppression of HNF-1α Results in Mitochondrial Dysfunction, INS-1 Cell Apoptosis, and Increased Sensitivity to Ceramide-, but Not to High Glucose-induced Cell Death. Journal of Biological Chemistry, 2002, 277, 6413-6421.	1.6	55
90	Single-cell Fluorescence Resonance Energy Transfer Analysis Demonstrates That Caspase Activation during Apoptosis Is a Rapid Process. Journal of Biological Chemistry, 2002, 277, 24506-24514.	1.6	276

#	Article	IF	CITATIONS
91	Ceramide-induced apoptosis of D283 medulloblastoma cells requires mitochondrial respiratory chain activity but occurs independently of caspases and is not sensitive to Bcl-xL overexpression. Journal of Neurochemistry, 2002, 82, 482-494.	2.1	30
92	Vascular Endothelial Growth Factor Protects Cultured Rat Hippocampal Neurons against Hypoxic Injury via an Antiexcitotoxic, Caspase-Independent Mechanism. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1170-1175.	2.4	113
93	Dissipation of Potassium and Proton Gradients Inhibits Mitochondrial Hyperpolarization and Cytochrome c Release during Neural Apoptosis. Journal of Neuroscience, 2001, 21, 4551-4563.	1.7	93
94	Multiple Kinetics of Mitochondrial Cytochrome <i>c</i> Release in Drug-Induced Apoptosis. Molecular Pharmacology, 2001, 60, 1008-1019.	1.0	53
95	Ca2+-induced inhibition of apoptosis in human SH-SY5Y neuroblastoma cells: degradation of apoptotic protease activating factor-1 (APAF-1). Journal of Neurochemistry, 2001, 78, 1256-1266.	2.1	53
96	The DAP kinase family of pro-apoptotic proteins: novel players in the apoptotic game. BioEssays, 2001, 23, 352-358.	1.2	89
97	Dlk/ZIP kinase-induced apoptosis in human medulloblastoma cells: requirement of the mitochondrial apoptosis pathway. British Journal of Cancer, 2001, 85, 1801-1808.	2.9	63
98	C-terminal truncation of Dlk/ZIP kinase leads to abrogation of nuclear transport and high apoptotic activity. Oncogene, 1999, 18, 7212-7218.	2.6	45
99	Interaction partners of Dlk/ZIP kinase: co-expression of Dlk/ZIP kinase and Par-4 results in cytoplasmic retention and apoptosis. Oncogene, 1999, 18, 7265-7273.	2.6	99
100	AATF, a novel transcription factor that interacts with Dlk/ZIP kinase and interferes with apoptosis1. FEBS Letters, 1999, 462, 187-191.	1.3	77
101	Cloning and characterization of Dlk, a novel serine/threonine kinase that is tightly associated with chromatin and phosphorylates core histones. Oncogene, 1998, 17, 2645-2654.	2.6	105
102	Molecular Biological Characterization of the Human Foamy Virus Reverse Transcriptase and Ribonuclease H Domains. Virology, 1995, 213, 97-108.	1.1	41
103	Mutational analysis of the reverse transcriptase and ribonuclease H domains of the human foamy virus. Nucleic Acids Research, 1995, 23, 2621-2625.	6.5	17