
Carla Spazzolini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7759654/publications.pdf Version: 2024-02-01

CADLA SDA77OLINI

#	Article	IF	CITATIONS
1	Genotype-Phenotype Correlation in the Long-QT Syndrome. Circulation, 2001, 103, 89-95.	1.6	1,641
2	Risk Stratification in the Long-QT Syndrome. New England Journal of Medicine, 2003, 348, 1866-1874.	13.9	1,314
3	Prevalence of the Congenital Long-QT Syndrome. Circulation, 2009, 120, 1761-1767.	1.6	855
4	Left Cardiac Sympathetic Denervation in the Management of High-Risk Patients Affected by the Long-QT Syndrome. Circulation, 2004, 109, 1826-1833.	1.6	600
5	The Jervell and Lange-Nielsen Syndrome. Circulation, 2006, 113, 783-790.	1.6	331
6	High Efficacy of β-Blockers in Long-QT Syndrome Type 1. Circulation, 2009, 119, 215-221.	1.6	274
7	Who Are the Long-QT Syndrome Patients Who Receive an Implantable Cardioverter-Defibrillator and What Happens to Them?. Circulation, 2010, 122, 1272-1282.	1.6	261
8	Clinical Management of Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2015, 131, 2185-2193.	1.6	238
9	Not All Beta-Blockers Are Equal in the Management of Long QT Syndrome Types 1 and 2. Journal of the American College of Cardiology, 2012, 60, 2092-2099.	1.2	234
10	Phenotypic Variability and Unusual Clinical Severity of Congenital Long-QT Syndrome in a Founder Population. Circulation, 2005, 112, 2602-2610.	1.6	179
11	The genetics underlying acquired long QT syndrome: impact for genetic screening. European Heart Journal, 2016, 37, 1456-1464.	1.0	164
12	Clinical Aspects of Type 3 Long-QT Syndrome. Circulation, 2016, 134, 872-882.	1.6	162
13	The Common Long-QT Syndrome Mutation KCNQ1/A341V Causes Unusually Severe Clinical Manifestations in Patients With Different Ethnic Backgrounds. Circulation, 2007, 116, 2366-2375.	1.6	157
14	Cost-effectiveness of neonatal ECG screening for the long QT syndrome. European Heart Journal, 2006, 27, 1824-1832.	1.0	121
15	Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. European Heart Journal, 2019, 40, 2964-2975.	1.0	116
16	Neural Control of Heart Rate Is an Arrhythmia Risk Modifier in Long QT Syndrome. Journal of the American College of Cardiology, 2008, 51, 920-929.	1.2	99
17	All LQT3 patients need an ICD: True or false?. Heart Rhythm, 2009, 6, 113-120.	0.3	91
18	Clinical Implications for Patients With Long QT Syndrome Who Experience a Cardiac Event During Infancy. Journal of the American College of Cardiology, 2009, 54, 832-837.	1.2	82

CARLA SPAZZOLINI

#	Article	IF	CITATIONS
19	Desmoplakin missense and non-missense mutations in arrhythmogenic right ventricular cardiomyopathy: Genotype-phenotype correlation. International Journal of Cardiology, 2017, 249, 268-273.	0.8	70
20	From patient-specific induced pluripotent stem cells to clinical translation in long QT syndrome Type 2. European Heart Journal, 2019, 40, 1832-1836.	1.0	69
21	Vagal Reflexes Following an Exercise Stress Test. Journal of the American College of Cardiology, 2012, 60, 2515-2524.	1.2	51
22	The genetics underlying idiopathic ventricular fibrillation: A special role for catecholaminergic polymorphic ventricular tachycardia?. International Journal of Cardiology, 2018, 250, 139-145.	0.8	42
23	An International Multicenter Evaluation of Type 5 Long QT Syndrome. Circulation, 2020, 141, 429-439.	1.6	39
24	Exercise Training-Induced Repolarization Abnormalities Masquerading as Congenital Long QT Syndrome. Circulation, 2020, 142, 2405-2415.	1.6	36
25	Propranolol prevents life-threatening arrhythmias in LQT3 transgenic mice: Implications for the clinical management of LQT3 patients. Heart Rhythm, 2014, 11, 126-132.	0.3	34
26	Mothers with long QT syndrome are at increased risk for fetal death: findings from a multicenter international study. American Journal of Obstetrics and Gynecology, 2020, 222, 263.e1-263.e11.	0.7	34
27	SCN5A mutations in 442 neonates and children: genotype–phenotype correlation and identification of higher-risk subgroups. European Heart Journal, 2018, 39, 2879-2887.	1.0	33
28	A comprehensive electrocardiographic, molecular, and echocardiographic study of Brugada syndrome: Validation of the 2013 diagnostic criteria. Heart Rhythm, 2014, 11, 1176-1183.	0.3	32
29	Mutation-Specific Risk in Two Genetic Forms of Type 3 Long QT Syndrome. American Journal of Cardiology, 2010, 105, 210-213.	0.7	28
30	Tumor Necrosis Factor-α Predicts Response to Cardiac Resynchronization Therapy in Patients With Chronic Heart Failure. Circulation Journal, 2014, 78, 2232-2239.	0.7	28
31	For neonatal ECG screening there is no reason to relinquish old Bazett's correction. European Heart Journal, 2018, 39, 2888-2895.	1.0	28
32	Mutation location and <i>I</i> ÂKs regulation in the arrhythmic risk of long QT syndrome type 1: the importance of the KCNQ1 S6 region. European Heart Journal, 2021, 42, 4743-4755.	1.0	26
33	Left Cardiac Sympathetic Denervation for Long QT Syndrome. JACC: Clinical Electrophysiology, 2022, 8, 281-294.	1.3	25
34	Genetic Modifiers for the Long-QT Syndrome. Circulation: Cardiovascular Genetics, 2016, 9, 330-339.	5.1	21
35	Rat Experimental Model of Myocardial Ischemia/Reperfusion Injury: An Ethical Approach to Set up the Analgesic Management of Acute Post-Surgical Pain. PLoS ONE, 2014, 9, e95913.	1.1	14
36	Cardiac arrest and Brugada syndrome: Is drug-induced type 1 ECG pattern always a marker of low risk?. International Journal of Cardiology, 2018, 254, 142-145.	0.8	13

#	Article	IF	CITATIONS
37	Response by Crotti et al to Letter Regarding Article, "Genetic Modifiers for the Long-QT Syndrome: How Important Is the Role of Variants in the 3′ Untranslated Region of KCNQ1?― Circulation: Cardiovascular Genetics, 2016, 9, 581-582.	5.1	10
38	Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare <i>KCNH2</i> Variants. Circulation Genomic and Precision Medicine, 2021, 14, e003289.	1.6	10
39	Response to Letters Regarding Article, "Clinical Management of Catecholaminergic Polymorphic Ventricular Tachycardia: The Role of Left Cardiac Sympathetic Denervation― Circulation, 2016, 133, e366-7.	1.6	2