

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7759399/publications.pdf Version: 2024-02-01

NINCLI

#	Article	IF	CITATIONS
1	Molecular Oligothiophene–Fullerene Dyad Reaching Over 5% Efficiency in Singleâ€Material Organic Solar Cells. Advanced Materials, 2022, 34, e2103573.	11.1	34
2	Comparison of the sputtered TiO ₂ anatase and rutile thin films as electron transporting layers in perovskite solar cells. Nano Select, 2022, 3, 990-997.	1.9	2
3	Intercalating-Organic-Cation-Induced Stability Bowing in Quasi-2D Metal-Halide Perovskites. ACS Energy Letters, 2022, 7, 70-77.	8.8	26
4	Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology. Nano Energy, 2022, 93, 106858.	8.2	71
5	Molecular Doping of a Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 1499-1508.	3.2	16
6	Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells. Joule, 2022, 6, 458-475.	11.7	64
7	A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nature Energy, 2022, 7, 144-152.	19.8	123
8	Unraveling the Chargeâ€Carrier Dynamics from the Femtosecond to the Microsecond Time Scale in Doubleâ€Cable Polymerâ€Based Singleâ€Component Organic Solar Cells. Advanced Energy Materials, 2022, 12, 2103406.	10.2	15
9	Understanding the Limitations of Charge Transporting Layers in Mixed Lead–Tin Halide Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	13
10	An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nature Energy, 2022, 7, 352-359.	19.8	155
11	Tailoring the Nature of Interface States in Efficient and Stable Bilayer Organic Solar Cells by a Transferâ€Printing Technique. Advanced Materials Interfaces, 2022, 9, .	1.9	4
12	An Innovative Anode Interface Combination for Perovskite Solar Cells with Improved Efficiency, Stability, and Reproducibility. Solar Rrl, 2022, 6, .	3.1	3
13	Industrial viability of single-component organic solar cells. Joule, 2022, 6, 1160-1171.	11.7	40
14	Targeted Adjusting Molecular Arrangement in Organic Solar Cells via a Universal Solid Additive. Advanced Functional Materials, 2022, 32, .	7.8	11
15	Doubleâ€Cable Conjugated Polymers with Pendent Nearâ€Infrared Electron Acceptors for Singleâ€Component Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
16	Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells. Nature Communications, 2022, 13, .	5.8	23
17	Molecular Donor–Acceptor Dyads for Efficient Singleâ€Material Organic Solar Cells. Solar Rrl, 2021, 5, 2000653.	3.1	30
18	High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nature Communications, 2021, 12, 178.	5.8	122

#	Article	IF	CITATIONS
19	Elucidating the Full Potential of OPV Materials Utilizing a High-Throughput Robot-Based Platform and Machine Learning. Joule, 2021, 5, 495-506.	11.7	86
20	Recent progress in thickâ€film organic photovoltaic devices: Materials, devices, and processing. SusMat, 2021, 1, 4-23.	7.8	59
21	Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning. Nature Communications, 2021, 12, 2191.	5.8	77
22	Single-Component Organic Solar Cells with Competitive Performance. Organic Materials, 2021, 03, 228-244.	1.0	36
23	Efficient Hole Transfer via Delocalized Excited State in Small Molecular Acceptor: A Comparative Study on Photodynamics of PM6:Y6 and PM6:ITIC Organic Photovoltaic Blends. Advanced Functional Materials, 2021, 31, 2102764.	7.8	37
24	Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules. Advanced Energy Materials, 2021, 11, 2101219.	10.2	52
25	Building process design rules for microstructure control in wide-bandgap mixed halide perovskite solar cells by a high-throughput approach. Applied Physics Letters, 2021, 118, .	1.5	8
26	Dopantâ€Free Holeâ€Transporting Material with Enhanced Intermolecular Interaction for Efficient and Stable nâ€iâ€p Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100967.	10.2	51
27	Branched side chains improve molecular packing of non-fullerene acceptors. Science China Chemistry, 2021, 64, 1435-1436.	4.2	1
28	Overcoming incompatibility of donors and acceptors by constructing planar heterojunction organic solar cells. Nano Energy, 2021, 85, 105957.	8.2	29
29	Understanding the Microstructure Formation of Polymer Films by Spontaneous Solution Spreading Coating with a Highâ€Throughput Engineering Platform. ChemSusChem, 2021, 14, 3590-3598.	3.6	14
30	Understanding degradation mechanisms of perovskite solar cells due to electrochemical metallization effect. Solar Energy Materials and Solar Cells, 2021, 230, 111278.	3.0	20
31	Utilizing the unique charge extraction properties of antimony tin oxide nanoparticles for efficient and stable organic photovoltaics. Nano Energy, 2021, 89, 106373.	8.2	8
32	Enabling High Efficiency of Hydrocarbonâ€Solvent Processed Organic Solar Cells through Balanced Charge Generation and Nonâ€Radiative Loss. Advanced Energy Materials, 2021, 11, 2101768.	10.2	61
33	Upscaling Solutionâ€Processed Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101973.	10.2	46
34	Solution-processed tandem organic solar cells. Journal of Semiconductors, 2021, 42, 110201.	2.0	2
35	Efficient polymer solar cells that use conjugated polyelectrolyte with a tetravalent amine-end side chain. Organic Electronics, 2020, 77, 105542.	1.4	3
36	Engineering of the Electron Transport Layer/Perovskite Interface in Solar Cells Designed on TiO ₂ Rutile Nanorods. Advanced Functional Materials, 2020, 30, 1909738.	7.8	46

#	Article	IF	CITATIONS
37	Realâ€Time Study on Structure Formation and the Intercalation Process of Polymer: Fullerene Bulk Heterojunction Thin Films. Solar Rrl, 2020, 4, 1900508.	3.1	1
38	Visualizing and Suppressing Nonradiative Losses in High Open-Circuit Voltage n-i-p-Type CsPbI ₃ Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 271-279.	8.8	39
39	Optimization of processing solvent and film morphology to achieve efficient non-fullerene polymer solar cells processed in air. Journal of Materials Chemistry C, 2020, 8, 270-275.	2.7	12
40	Interface engineering with a novel n-type small organic molecule for efficient inverted perovskite solar cells. Chemical Engineering Journal, 2020, 392, 123677.	6.6	31
41	Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive. Chinese Journal of Polymer Science (English Edition), 2020, 38, 323-331.	2.0	35
42	Fully Solution Processed Pure αâ€Phase Formamidinium Lead Iodide Perovskite Solar Cells for Scalable Production in Ambient Condition. Advanced Energy Materials, 2020, 10, 2001869.	10.2	46
43	Material Strategies to Accelerate OPV Technology Toward a GW Technology. Advanced Energy Materials, 2020, 10, 2001864.	10.2	93
44	Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nature Communications, 2020, 11, 6005.	5.8	112
45	Effects on Photovoltaic Characteristics by Organic Bilayer- and Bulk-Heterojunctions: Energy Losses, Carrier Recombination and Generation. ACS Applied Materials & Interfaces, 2020, 12, 55945-55953.	4.0	14
46	A Universal Fluorinated Polymer Acceptor Enables All-Polymer Solar Cells with >15% Efficiency. ACS Energy Letters, 2020, 5, 3702-3707.	8.8	152
47	Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nature Communications, 2020, 11, 3943.	5.8	458
48	A Costâ€Effective, Aqueousâ€Solutionâ€Processed Cathode Interlayer Based on Organosilica Nanodots for Highly Efficient and Stable Organic Solar Cells. Advanced Materials, 2020, 32, e2002973.	11.1	60
49	Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nature Communications, 2020, 11, 6328.	5.8	86
50	A General Guideline for Vertically Resolved Imaging of Manufacturing Defects in Organic Tandem Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000336.	1.9	2
51	Axisymmetric and Asymmetric Naphthalene-Bisthienothiophene Based Nonfullerene Acceptors: On Constitutional Isomerization and Photovoltaic Performance. ACS Applied Energy Materials, 2020, 3, 5734-5744.	2.5	14
52	Composition Engineering of Allâ€Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells. Advanced Functional Materials, 2020, 30, 2001764.	7.8	69
53	Efficient Surface Passivation and Electron Transport Enable Low Temperature-Processed Inverted Perovskite Solar Cells with Efficiency over 20%. ACS Sustainable Chemistry and Engineering, 2020, 8, 8848-8856.	3.2	9
54	Hybrid Quantum Dot/Organic Heterojunction: A Route to Improve Open-Circuit Voltage in PbS Colloidal Quantum Dot Solar Cells. ACS Energy Letters, 2020, 5, 2335-2342.	8.8	54

#	Article	IF	CITATIONS
55	High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. Journal of Materials Chemistry A, 2020, 8, 8104-8112.	5.2	82
56	A pressure process for efficient and stable perovskite solar cells. Nano Energy, 2020, 77, 105063.	8.2	35
57	A Crossâ€Linked Interconnecting Layer Enabling Reliable and Reproducible Solutionâ€Processing of Organic Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1903800.	10.2	21
58	Unraveling the Microstructureâ€Related Device Stability for Polymer Solar Cells Based on Nonfullerene Smallâ€Molecular Acceptors. Advanced Materials, 2020, 32, e1908305.	11.1	161
59	The role of connectivity in significant bandgap narrowing for fused-pyrene based non-fullerene acceptors toward high-efficiency organic solar cells. Journal of Materials Chemistry A, 2020, 8, 5995-6003.	5.2	11
60	Ternary All-Polymer Solar Cells With 8.5% Power Conversion Efficiency and Excellent Thermal Stability. Frontiers in Chemistry, 2020, 8, 302.	1.8	19
61	Inorganic Halide Perovskite Solar Cells: Progress and Challenges. Advanced Energy Materials, 2020, 10, 2000183.	10.2	231
62	Efficient Exciton Diffusion in Organic Bilayer Heterojunctions with Nonfullerene Small Molecular Acceptors. ACS Energy Letters, 2020, 5, 1628-1635.	8.8	52
63	Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MAâ€Free Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000571.	11.1	166
64	Simultaneously Improved Efficiency and Stability in All-Polymer Solar Cells by a P–i–N Architecture. ACS Energy Letters, 2019, 4, 2277-2286.	8.8	127
65	Interface Molecular Engineering for Laminated Monolithic Perovskite/Silicon Tandem Solar Cells with 80.4% Fill Factor. Advanced Functional Materials, 2019, 29, 1901476.	7.8	43
66	Influence of Thiazole-Modified Carbon Nitride Nanosheets with Feasible Electronic Properties on Inverted Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 12322-12328.	6.6	61
67	Thermal-Driven Phase Separation of Double-Cable Polymers Enables Efficient Single-Component Organic Solar Cells. Joule, 2019, 3, 1765-1781.	11.7	124
68	Bismuth Telluride Interlayer for Allâ€Inorganic Perovskite Solar Cells with Enhanced Efficiency and Stability. Solar Rrl, 2019, 3, 1900233.	3.1	27
69	Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy, 2019, 64, 103931.	8.2	81
70	Revealing Hidden UV Instabilities in Organic Solar Cells by Correlating Device and Material Stability. Advanced Energy Materials, 2019, 9, 1902124.	10.2	74
71	Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nature Communications, 2019, 10, 4100.	5.8	129
72	Optimizing Microstructure Morphology and Reducing Electronic Losses in 1 cm ² Polymer Solar Cells to Achieve Efficiency over 15%. ACS Energy Letters, 2019, 4, 2466-2472.	8.8	58

#	Article	IF	CITATIONS
73	A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy and Environmental Science, 2019, 12, 157-163.	15.6	287
74	Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications. Journal of Materials Chemistry C, 2019, 7, 1575-1583.	2.7	19
75	From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. Journal of Materials Chemistry A, 2019, 7, 23361-23377.	5.2	163
76	Comprehensive Investigation and Analysis of Bulk-Heterojunction Microstructure of High-Performance PCE11:PCBM Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 18555-18563.	4.0	30
77	Discriminating bulk versus interface shunts in organic solar cells by advanced imaging techniques. Progress in Photovoltaics: Research and Applications, 2019, 27, 460-468.	4.4	10
78	Stability of Nonfullerene Organic Solar Cells: from Builtâ€in Potential and Interfacial Passivation Perspectives. Advanced Energy Materials, 2019, 9, 1900157.	10.2	105
79	Facile Fabrication of Superhydrophobic and Eco-Friendly Poly(lactic acid) Foam for Oil–Water Separation via Skin Peeling. ACS Applied Materials & Interfaces, 2019, 11, 14362-14367.	4.0	132
80	Evidencing Excellent Thermal―and Photostability for Singleâ€Component Organic Solar Cells with Inherently Builtâ€In Microstructure. Advanced Energy Materials, 2019, 9, 1900409.	10.2	99
81	Dual Interfacial Design for Efficient CsPbI ₂ Br Perovskite Solar Cells with Improved Photostability. Advanced Materials, 2019, 31, e1901152.	11.1	328
82	An Operando Study on the Photostability of Nonfullerene Organic Solar Cells. Solar Rrl, 2019, 3, 1900077.	3.1	59
83	Favorable Mixing Thermodynamics in Ternary Polymer Blends for Realizing High Efficiency Plastic Solar Cells. Advanced Energy Materials, 2019, 9, 1803394.	10.2	44
84	A top-down strategy identifying molecular phase stabilizers to overcome microstructure instabilities in organic solar cells. Energy and Environmental Science, 2019, 12, 1078-1087.	15.6	89
85	Assembling Mesoscale‧tructured Organic Interfaces in Perovskite Photovoltaics. Advanced Materials, 2019, 31, e1806516.	11.1	16
86	Efficient Polymer Solar Cells Based on Non-fullerene Acceptors with Potential Device Lifetime Approaching 10 Years. Joule, 2019, 3, 215-226.	11.7	355
87	Highâ€Performance Thickâ€Film Allâ€Polymer Solar Cells Created Via Ternary Blending of a Novel Wideâ€Bandgap Electronâ€Donating Copolymer. Advanced Energy Materials, 2018, 8, 1703085.	10.2	115
88	Overcoming Microstructural Limitations in Water Processed Organic Solar Cells by Engineering Customized Nanoparticulate Inks. Advanced Energy Materials, 2018, 8, 1702857.	10.2	48
89	Improved Tandem Allâ€Polymer Solar Cells Performance by Using Spectrally Matched Subcells. Advanced Energy Materials, 2018, 8, 1703291.	10.2	54
90	A Universal Strategy to Utilize Polymeric Semiconductors for Perovskite Solar Cells with Enhanced Efficiency and Longevity. Advanced Functional Materials, 2018, 28, 1706377.	7.8	134

#	Article	IF	CITATIONS
91	Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy and Environmental Science, 2018, 11, 1355-1361.	15.6	157
92	Thermally Stable Allâ€Polymer Solar Cells with High Tolerance on Blend Ratios. Advanced Energy Materials, 2018, 8, 1800029.	10.2	163
93	Exploring the Stability of Novel Wide Bandgap Perovskites by a Robot Based High Throughput Approach. Advanced Energy Materials, 2018, 8, 1701543.	10.2	75
94	Microstructure instabilities in solution-processed organic bulk-heterojunction solar cells. , 2018, , .		0
95	Overcoming the morphological and efficiency limit in all-polymer solar cells by designing conjugated random copolymers containing a naphtho[1,2- <i>c</i> ;5,6- <i>c</i> ′]bis([1,2,5]thiadiazole)] moiety. Journal of Materials Chemistry A, 2018, 6, 23295-23300.	5.2	15
96	Realizing solution-processed monolithic PbS QDs/perovskite tandem solar cells with high UV stability. Journal of Materials Chemistry A, 2018, 6, 24693-24701.	5.2	45
97	Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nature Communications, 2018, 9, 5335.	5.8	91
98	Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nature Energy, 2018, 3, 1051-1058.	19.8	281
99	Non-fullerene acceptors end-capped with an extended conjugation group for efficient polymer solar cells. Organic Electronics, 2018, 59, 366-373.	1.4	8
100	Morphology Optimization via Side Chain Engineering Enables All-Polymer Solar Cells with Excellent Fill Factor and Stability. Journal of the American Chemical Society, 2018, 140, 8934-8943.	6.6	218
101	Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%. Nano Energy, 2018, 51, 434-441.	8.2	61
102	Improved Efficiency of Polymer Solar Cells by Modifying the Side Chain of Wide-Band Gap Conjugated Polymers Containing Pyrrolo[3,4- <i>f</i>]benzotriazole-5,7(6 <i>H</i>)-dione Moiety. ACS Applied Materials & Interfaces, 2018, 10, 22495-22503.	4.0	22
103	Efficient Organic Solar Cells with Extremely High Openâ€Circuit Voltages and Low Voltage Losses by Suppressing Nonradiative Recombination Losses. Advanced Energy Materials, 2018, 8, 1801699.	10.2	117
104	Highâ€Performance Green Solvent Processed Ternary Blended Allâ€Polymer Solar Cells Enabled by Complementary Absorption and Improved Morphology. Solar Rrl, 2018, 2, 1800196.	3.1	26
105	Synthesis of cesium-doped ZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells. Journal of Materials Chemistry A, 2018, 6, 17688-17697.	5.2	65
106	Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 23225-23234.	4.0	45
107	Toward Thermal Stable and High Photovoltaic Efficiency Ternary Conjugated Copolymers: Influence of Backbone Fluorination and Regioselectivity. Chemistry of Materials, 2017, 29, 1758-1768.	3.2	66
108	Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nature Communications, 2017, 8, 14541.	5.8	298

#	Article	IF	CITATIONS
109	Towards a full understanding of regioisomer effects of indene-C ₆₀ bisadduct acceptors in bulk heterojunction polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 10206-10219.	5.2	31
110	Room-Temperature Processed Nb ₂ O ₅ as the Electron-Transporting Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 23181-23188.	4.0	120
111	Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1700007.	1.9	57
112	Washing away barriers. Nature Energy, 2017, 2, 772-773.	19.8	14
113	Understanding the correlation and balance between the miscibility and optoelectronic properties of polymer–fullerene solar cells. Journal of Materials Chemistry A, 2017, 5, 17570-17579.	5.2	35
114	A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358, 1192-1197.	6.0	554
115	Introducing a New Potential Figure of Merit for Evaluating Microstructure Stability in Photovoltaic Polymer-Fullerene Blends. Journal of Physical Chemistry C, 2017, 121, 18153-18161.	1.5	52
116	Overcoming the Thermal Instability of Efficient Polymer Solar Cells by Employing Novel Fullereneâ€Based Acceptors. Advanced Energy Materials, 2017, 7, 1601204.	10.2	69
117	Overcoming Interfacial Losses in Solutionâ€Processed Organic Multiâ€Junction Solar Cells. Advanced Energy Materials, 2017, 7, 1601959.	10.2	39
118	Revealing Minor Electrical Losses in the Interconnecting Layers of Organic Tandem Solar Cells. Advanced Materials Interfaces, 2017, 4, 1700776.	1.9	14
119	Innovative architecture design for high performance organic and hybrid multi-junction solar cells. , 2017, , .		0
120	Overcoming the Interface Losses in Planar Heterojunction Perovskiteâ€Based Solar Cells. Advanced Materials, 2016, 28, 5112-5120.	11.1	188
121	Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design. Journal of Materials Chemistry A, 2016, 4, 11604-11610.	5.2	49
122	Exploring the Limiting Open ircuit Voltage and the Voltage Loss Mechanism in Planar CH ₃ NH ₃ PbBr ₃ Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600132.	10.2	71
123	Roll to roll compatible fabrication of inverted organic solar cells with a self-organized charge selective cathode interfacial layer. Journal of Materials Chemistry A, 2016, 4, 5032-5038.	5.2	49
124	Controlling additive behavior to reveal an alternative morphology formation mechanism in polymer : fullerene bulk-heterojunctions. Journal of Materials Chemistry A, 2016, 4, 16136-16147.	5.2	22
125	Organic and perovskite solar modules innovated by adhesive top electrode and depth-resolved laser patterning. Energy and Environmental Science, 2016, 9, 2302-2313.	15.6	64
126	Overcoming Electrodeâ€Induced Losses in Organic Solar Cells by Tailoring a Quasiâ€Ohmic Contact to Fullerenes via Solutionâ€Processed Alkali Hydroxide Layers. Advanced Energy Materials, 2016, 6, 1502195.	10.2	29

#	Article	IF	CITATIONS
127	Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. Energy and Environmental Science, 2015, 8, 1690-1697.	15.6	83
128	A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nature Communications, 2015, 6, 7730.	5.8	67
129	Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%. Energy and Environmental Science, 2015, 8, 2902-2909.	15.6	159
130	Air-processed organic tandem solar cells on glass: toward competitive operating lifetimes. Energy and Environmental Science, 2015, 8, 169-176.	15.6	80
131	Patterning of organic photovoltaic modules by ultrafast laser. Progress in Photovoltaics: Research and Applications, 2015, 23, 238-246.	4.4	62
132	Solution-Processed Parallel Tandem Polymer Solar Cells Using Silver Nanowires as Intermediate Electrode. ACS Nano, 2014, 8, 12632-12640.	7.3	34
133	Flexible organic tandem solar modules: a story of up-scaling. , 2014, , .		0
134	Environmentally Printing Efficient Organic Tandem Solar Cells with High Fill Factors: A Guideline Towards 20% Power Conversion Efficiency. Advanced Energy Materials, 2014, 4, 1400084.	10.2	116
135	Towards large-scale production of solution-processed organic tandem modules based on ternary composites: Design of the intermediate layer, device optimization and laser based module processing. Solar Energy Materials and Solar Cells, 2014, 120, 701-708.	3.0	30
136	A solution-processed barium hydroxide modified aluminum doped zinc oxide layer for highly efficient inverted organic solar cells. Journal of Materials Chemistry A, 2014, 2, 18917-18923.	5.2	47
137	A universal method to form the equivalent ohmic contact for efficient solution-processed organic tandem solar cells. Journal of Materials Chemistry A, 2014, 2, 14896-14902.	5.2	20
138	Qualitative Analysis of Bulk-Heterojunction Solar Cells without Device Fabrication: An Elegant and Contactless Method. Journal of the American Chemical Society, 2014, 136, 10949-10955.	6.6	28
139	Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors. Energy and Environmental Science, 2014, 7, 3284-3290.	15.6	75
140	Cost analysis of roll-to-roll fabricated ITO free single and tandem organic solar modules based on data from manufacture. Energy and Environmental Science, 2014, 7, 2792.	15.6	170
141	Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy and Environmental Science, 2014, 7, 2925.	15.6	255
142	Fully Solution-Processing Route toward Highly Transparent Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 18251-18257.	4.0	68
143	Highly efficient organic tandem solar cells: a follow up review. Energy and Environmental Science, 2013, 6, 2390.	15.6	440
144	An Efficient Solutionâ€Processed Intermediate Layer for Facilitating Fabrication of Organic Multiâ€Junction Solar Cells. Advanced Energy Materials, 2013, 3, 1597-1605.	10.2	45

#	Article	IF	CITATIONS
145	Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials. Energy and Environmental Science, 2013, 6, 3407.	15.6	96
146	A solution-processable star-shaped molecule for high-performance organic solar cells via alkyl chain engineering and solvent additive. Organic Electronics, 2013, 14, 219-229.	1.4	57
147	IR sensitization of an indene-C60 bisadduct (ICBA) in ternary organic solar cells. Energy and Environmental Science, 2013, 6, 1796.	15.6	101
148	ITOâ€Free and Fully Solutionâ€Processed Semitransparent Organic Solar Cells with High Fill Factors. Advanced Energy Materials, 2013, 3, 1062-1067.	10.2	172
149	Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers. Journal of Materials Chemistry A, 2013, 1, 6004.	5.2	79
150	Design of the Solutionâ€Processed Intermediate Layer by Engineering for Inverted Organic Multi junction Solar Cells. Advanced Energy Materials, 2013, 3, 301-307.	10.2	57
151	Low-temperature solution-processed metal oxide buffer layers fulfilling large area production requirements. Proceedings of SPIE, 2012, , .	0.8	0
152	Near IR sensitization of polymer/fullerene solar cells. Proceedings of SPIE, 2012, , .	0.8	1
153	High Fill Factor Polymer Solar Cells Incorporating a Low Temperature Solution Processed WO ₃ Hole Extraction Layer. Advanced Energy Materials, 2012, 2, 1433-1438.	10.2	186
154	High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode. Solar Energy Materials and Solar Cells, 2012, 107, 248-251.	3.0	75
155	Inverted structure organic photovoltaic devices employing a low temperature solution processed WO3 anode buffer layer. Organic Electronics, 2012, 13, 2479-2484.	1.4	57
156	Nanocrystal V2O5 thin film as hole-extraction layer in normal architecture organic solar cells. Organic Electronics, 2012, 13, 3014-3021.	1.4	51
157	Influence of a ternary donor material on the morphology of a P3HT:PCBM blend for organic photovoltaic devices. Journal of Materials Chemistry, 2012, 22, 15570.	6.7	91
158	Performance Enhancement of the P3HT/PCBM Solar Cells through NIR Sensitization Using a Smallâ€Bandgap Polymer. Advanced Energy Materials, 2012, 2, 1198-1202.	10.2	199
159	Determination of phase diagrams of binary and ternary organic semiconductor blends for organic photovoltaic devices. Solar Energy Materials and Solar Cells, 2011, 95, 3465-3471.	3.0	69
160	Comparison of Electroluminescence Intensity and Photocurrent of Polymer Based Solar Cells. Advanced Energy Materials, 2011, 1, 1097-1100.	10.2	19
161	Quantitative Analysis of Charge Dissociation by Selectively Characterizing Exciton Splitting Efficiencies in Single Component Materials. Israel Journal of Chemistry, 0, , .	1.0	0
162	Doubleâ€Cable Conjugated Polymers with Pendent Nearâ€Infrared Electron Acceptors for Singleâ€Component Organic Solar Cells. Angewandte Chemie, 0, , .	1.6	0