
Justus B Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7759273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells. Scientific Reports, 2015, 5, 11483.	3.3	270
2	Diversity of germ-line immunoglobulin VH genes. Nature, 1981, 292, 426-430.	27.8	153
3	Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Therapy, 1998, 5, 1517-1530.	4.5	152
4	A point mutation in the last intron responsible for increased expression and transforming activity of the c-Ha-ras oncogene. Nature, 1988, 334, 119-124.	27.8	139
5	Organization and evolution of immunoglobulin VH gene subgroups Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 4405-4409.	7.1	123
6	"Retroposon" insertion into the cellular oncogene c-myc in canine transmissible venereal tumor Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 1054-1058.	7.1	118
7	Rearrangement of the oncogene c-mos in mouse myeloma NSI and hybridomas. Nature, 1983, 306, 797-799.	27.8	113
8	Simple DNA sequences in homologous flanking regions near immunoglobulin VHgenes: a role in gene interaction?. Nucleic Acids Research, 1982, 10, 3353-3370.	14.5	112
9	Expression of the H-ras proto-oncogene is controlled by alternative splicing. Cell, 1989, 58, 461-472.	28.9	105
10	Effective Treatment of Experimental Glioblastoma by HSV Vector-Mediated TNFα and HSV-tk Gene Transfer in Combination with Radiosurgery and Ganciclovir Administration. Molecular Therapy, 2000, 2, 114-120.	8.2	99
11	Effective Treatment of an Orthotopic Xenograft Model of Human Glioblastoma Using an EGFR-retargeted Oncolytic Herpes Simplex Virus. Molecular Therapy, 2013, 21, 561-569.	8.2	94
12	Connexin 43-Enhanced Suicide Gene Therapy Using Herpesviral Vectors. Molecular Therapy, 2000, 1, 71-81.	8.2	87
13	Herpes simplex virus vector-mediated dystrophin gene transfer and expression in MDX mouse skeletal muscle. Journal of Gene Medicine, 1999, 1, 280-289.	2.8	69
14	Use of miRNA Response Sequences to Block Off-target Replication and Increase the Safety of an Unattenuated, Glioblastoma-targeted Oncolytic HSV. Molecular Therapy, 2015, 23, 99-107.	8.2	69
15	Equine Herpesvirus 1 Enters Cells by Two Different Pathways, and Infection Requires the Activation of the Cellular Kinase ROCK1. Journal of Virology, 2007, 81, 10879-10889.	3.4	62
16	Double suicide gene therapy using a replication defective herpes simplex virus vector reveals reciprocal interference in a malignant glioma model. Gene Therapy, 2002, 9, 584-591.	4.5	60
17	Pseudotyping of Glycoprotein D-Deficient Herpes Simplex Virus Type 1 with Vesicular Stomatitis Virus Glycoprotein G Enables Mutant Virus Attachment and Entry. Journal of Virology, 2000, 74, 2481-2487.	3.4	55
18	Treatment of rat gliosarcoma brain tumors by HSV-based multigene therapy combined with radiosurgery. Molecular Therapy, 2003, 8, 530-542.	8.2	51

JUSTUS B COHEN

#	Article	IF	CITATIONS
19	Gene therapy for the treatment of chronic peripheral nervous system pain. Neurobiology of Disease, 2012, 48, 255-270.	4.4	51
20	Engineering HSV-1 Vectors for Gene Therapy. Methods in Molecular Biology, 2014, 1144, 63-79.	0.9	51
21	Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1632-41.	7.1	51
22	A Double Mutation in Glycoprotein gB Compensates for Ineffective gD-Dependent Initiation of Herpes Simplex Virus Type 1 Infection. Journal of Virology, 2010, 84, 12200-12209.	3.4	48
23	HSV vector cytotoxicity is inversely correlated with effective TK/GCV suicide gene therapy of rat gliosarcoma. Gene Therapy, 2000, 7, 1483-1490.	4.5	46
24	Design and application of oncolytic HSV vectors for glioblastoma therapy. Expert Review of Neurotherapeutics, 2009, 9, 505-517.	2.8	46
25	Herpes Simplex Virus Targeting to the EGF Receptor by a gD-Specific Soluble Bridging Molecule. Molecular Therapy, 2005, 11, 617-626.	8.2	44
26	Soluble V Domain of Nectin-1/HveC Enables Entry of Herpes Simplex Virus Type 1 (HSV-1) into HSV-Resistant Cells by Binding to Viral Glycoprotein D. Journal of Virology, 2006, 80, 138-148.	3.4	43
27	Chk2 is required for HSV-1 ICPO-mediated G2/M arrest and enhancement of virus growth. Virology, 2008, 375, 13-23.	2.4	42
28	Herpesvirus-Mediated Systemic Delivery of Nerve Growth Factor. Molecular Therapy, 2001, 3, 61-69.	8.2	41
29	Suppression of mammalian 5' splice-site defects by U1 small nuclear RNAs from a distance Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10470-10474.	7.1	40
30	Ectopic matrix metalloproteinase-9 expression in human brain tumor cells enhances oncolytic HSV vector infection. Gene Therapy, 2010, 17, 1200-1205.	4.5	40
31	Herpes Simplex Virus Vectors for Gene Transfer to the Central Nervous System. Diseases (Basel,) Tj ETQq1 1 0.78	4314 rgB ⁻ 2.5	T /Qverlock 1
32	Equine herpesvirus type 1 (EHV-1) utilizes microtubules, dynein, and ROCK1 to productively infect cells. Veterinary Microbiology, 2010, 141, 12-21.	1.9	35
33	Enhanced efficacy of conditionally replicating herpes simplex virus (G207) combined with 5-fluorouracil and surgical resection in peritoneal cancer dissemination models. Journal of Gene Medicine, 2005, 7, 638-648.	2.8	33
34	Oncolytic HSV virotherapy in murine sarcomas differentially triggers an antitumor T-cell response in the absence of virus permissivity. Molecular Therapy - Oncolytics, 2014, 1, 14010.	4.4	33
35	Polymorphism of germ-line immunoglobulin VH genes correlates with allotype and idiotype markers. European Journal of Immunology, 1981, 11, 1017-1020.	2.9	32
36	Generation of Herpesvirus Entry Mediator (HVEM)-Restricted Herpes Simplex Virus Type 1 Mutant Viruses: Resistance of HVEM-Expressing Cells and Identification of Mutations That Rescue Nectin-1 Recognition. Journal of Virology, 2009, 83, 2951-2961.	3.4	31

Justus B Cohen

#	Article	IF	CITATIONS
37	Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Therapy, 2016, 23, 479-488.	4.5	30
38	Cloning and sequence of the cDNA corresponding to the variable region of immunoglobulin heavy chain MPC11. Nucleic Acids Research, 1980, 8, 3591-3602.	14.5	27
39	Novel Mutations in gB and gH Circumvent the Requirement for Known gD Receptors in Herpes Simplex Virus 1 Entry and Cell-to-Cell Spread. Journal of Virology, 2013, 87, 1430-1442.	3.4	27
40	Engineered HSV vector achieves safe long-term transgene expression in the central nervous system. Scientific Reports, 2017, 7, 1507.	3.3	27
41	Phenotypic heterogeneity associated with the splicing mutation in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 4081-4088.	3.6	26
42	Combination gene therapy for glioblastoma involving herpes simplex virus vector-mediated codelivery of mutant lκBݱ and HSV thymidine kinase. Cancer Gene Therapy, 2005, 12, 487-496.	4.6	25
43	Equine Herpesvirus 1 Utilizes a Novel Herpesvirus Entry Receptor. Journal of Virology, 2005, 79, 3169-3173.	3.4	25
44	Retargeting of herpes simplex virus (HSV) vectors. Current Opinion in Virology, 2016, 21, 93-101.	5.4	24
45	Genetic Studies Exposing the Splicing Events Involved in Herpes Simplex Virus Type 1 Latency-Associated Transcript Production during Lytic and Latent Infection. Journal of Virology, 1999, 73, 3866-3876.	3.4	23
46	Bispecific Adapter-Mediated Retargeting of a Receptor-Restricted HSV-1 Vector to CEA-Bearing Tumor Cells. Molecular Therapy, 2011, 19, 507-514.	8.2	20
47	A repetitive sequence element 3? of the human c-Ha-ras1 gene has enhancer activity. Journal of Cellular Physiology, 1987, 133, 75-81.	4.1	19
48	Moving toward a gene therapy for Huntington's disease. Gene Therapy, 2015, 22, 931-933.	4.5	17
49	Engineering HSV-1 Vectors for Gene Therapy. Methods in Molecular Biology, 2020, 2060, 73-90.	0.9	17
50	Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor- Associated Antigens. Current Cancer Drug Targets, 2018, 18, 162-170.	1.6	16
51	Point Mutations in Retargeted gD Eliminate the Sensitivity of EGFR/EGFRvIII-Targeted HSV to Key Neutralizing Antibodies. Molecular Therapy - Methods and Clinical Development, 2020, 16, 145-154.	4.1	15
52	Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection. Virology, 2007, 360, 477-491.	2.4	14
53	Deletion of the Virion Host Shut-off Gene Enhances Neuronal-Selective Transgene Expression from an HSV Vector Lacking Functional IE Genes. Molecular Therapy - Methods and Clinical Development, 2017, 6, 79-90.	4.1	14
54	Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor. Virology, 2011, 413, 12-18.	2.4	12

JUSTUS B COHEN

#	Article	IF	CITATIONS
55	Expression of HSV-1 receptors in EBV-associated lymphoproliferative disease determines susceptibility to oncolytic HSV. Gene Therapy, 2013, 20, 761-769.	4.5	12
56	Cellular Antisilencing Elements Support Transgene Expression from Herpes Simplex Virus Vectors in the Absence of Immediate Early Gene Expression. Journal of Virology, 2018, 92, .	3.4	12
57	A Herpes Simplex Virus Vector System for Expression of Complex Cellular cDNA Libraries. Journal of Virology, 2010, 84, 7360-7368.	3.4	11
58	Inhibition of Indoleamine-2,3-dioxygenase (IDO) in Glioblastoma Cells by Oncolytic Herpes Simplex Virus. Advances in Virology, 2012, 2012, 1-10.	1.1	10
59	An HSV-based library screen identifies PP1α as a negative TRPV1 regulator with analgesic activity in models of pain. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16040.	4.1	9
60	Syncytial Mutations Do Not Impair the Specificity of Entry and Spread of a Glycoprotein D Receptor-Retargeted Herpes Simplex Virus. Journal of Virology, 2016, 90, 11096-11105.	3.4	8
61	Oncolytic HSV Vectors and Anti-Tumor Immunity. Current Issues in Molecular Biology, 2021, 41, 381-468.	2.4	8
62	Generation of an Oncolytic Herpes Simplex Viral Vector Completely Retargeted to the GDNF Receptor GFRα1 for Specific Infection of Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 8815.	4.1	7
63	Constitutive Expression of GATA4 Dramatically Increases the Cardiogenic Potential of D3 Mouse Embryonic Stem Cells. Open Biotechnology Journal, 2016, 10, 248-257.	1.2	7
64	Protocol Optimization for the Production of the Non-Cytotoxic JΔNI5 HSV Vector Deficient in Expression of Immediately Early Genes. Molecular Therapy - Methods and Clinical Development, 2020, 17, 612-621.	4.1	5
65	Evaluation of parameters for efficient purification and long-term storage of herpes simplex virus-based vectors. Molecular Therapy - Methods and Clinical Development, 2022, 26, 132-143.	4.1	3
66	Treatment of glioblastoma with current oHSV variants reveals differences in efficacy and immune cell recruitment. Molecular Therapy - Oncolytics, 2021, 22, 444-453.	4.4	1
67	Cloning and sequence of the cDNA corresponding to the variable region of immonoglobin heavy chain MPC11. Nucleic Acids Research, 1980, 8, 4839-4839.	14.5	0
68	Herpes Simplex Virus Vectors. , 2010, , 69-85.		0
69	Abstract PO089: Comparison of Two oHSV Vectors for the Treatment of Glioblastoma. , 2021, , .		Ο