Anna M Ukkola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7758858/publications.pdf

Version: 2024-02-01

41 papers

2,335 citations

23 h-index

279798

265206 42 g-index

70 all docs

70 docs citations

70 times ranked

3111 citing authors

#	Article	IF	CITATIONS
1	Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2021, 2, .	6.8	341
2	Robust Future Changes in Meteorological Drought in <scp>CMIP6</scp> Projections Despite Uncertainty in Precipitation. Geophysical Research Letters, 2020, 47, e2020GL087820.	4.0	239
3	Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nature Climate Change, 2016, 6, 75-78.	18.8	230
4	The aridity Index under global warming. Environmental Research Letters, 2019, 14, 124006.	5.2	124
5	Global hotspots for the occurrence of compound events. Nature Communications, 2020, 11, 5956.	12.8	111
6	The role of climate variability in Australian drought. Nature Climate Change, 2020, 10, 177-179.	18.8	102
7	Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environmental Research Letters, 2016, 11, 104012.	5.2	88
8	Intensification of precipitation extremes in the worldâ \in TM s humid and water-limited regions. Environmental Research Letters, 2019, 14, 065003.	5.2	80
9	ldentifying areas at risk of droughtâ€induced tree mortality across Southâ€Eastern Australia. Global Change Biology, 2020, 26, 5716-5733.	9.5	79
10	Increased occurrence of high impact compound events under climate change. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	74
11	A worldwide analysis of trends in water-balance evapotranspiration. Hydrology and Earth System Sciences, 2013, 17, 4177-4187.	4.9	61
12	Do CMIP6 Climate Models Simulate Global or Regional Compound Events Skillfully?. Geophysical Research Letters, 2021, 48, e2020GL091152.	4.0	60
13	Evaluating CMIP5 Model Agreement for Multiple Drought Metrics. Journal of Hydrometeorology, 2018, 19, 969-988.	1.9	59
14	Plant profit maximization improves predictions of European forest responses to drought. New Phytologist, 2020, 226, 1638-1655.	7.3	59
15	Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences, 2018, 15, 3421-3437.	3.3	55
16	Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes. Biogeosciences, 2019, 16, 903-916.	3.3	54
17	Evaluating the Contribution of Landâ€Atmosphere Coupling to Heat Extremes in CMIP5 Models. Geophysical Research Letters, 2018, 45, 9003-9012.	4.0	50
18	Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand?. Global Change Biology, 2020, 26, 3336-3355.	9.5	50

#	Article	IF	Citations
19	Derived Optimal Linear Combination Evapotranspiration (DOLCE): aÂglobal gridded synthesis ET estimate. Hydrology and Earth System Sciences, 2018, 22, 1317-1336.	4.9	49
20	Annual precipitation explains variability in dryland vegetation greenness globally but not locally. Global Change Biology, 2021, 27, 4367-4380.	9.5	44
21	Modelling evapotranspiration during precipitation deficits: identifying critical processes in a land surface model. Hydrology and Earth System Sciences, 2016, 20, 2403-2419.	4.9	33
22	New turbulent resistance parameterization for soil evaporation based on a poreâ€scale model: Impact on surface fluxes in <scp>CABLE</scp> . Journal of Advances in Modeling Earth Systems, 2017, 9, 220-238.	3.8	30
23	Vegetation plays an important role in mediating future water resources. Environmental Research Letters, 2016, 11, 094022.	5.2	26
24	Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts. Earth System Dynamics, 2021, 12, 919-938.	7.1	18
25	CMIP6 MultiModel Evaluation of Presentâ€Day Heatwave Attributes. Geophysical Research Letters, 2021, 48, e2021GL095161.	4.0	18
26	Exploring the stationarity of Australian temperature, precipitation and pan evaporation records over the last century. Environmental Research Letters, 2019, 14, 124035.	5.2	17
27	Ten new insights in climate science 2020 – a horizon scan. Global Sustainability, 2021, 4, .	3.3	17
28	Evaluating a land surface model at a water-limited site: implications for land surface contributions to droughts and heatwaves. Hydrology and Earth System Sciences, 2021, 25, 447-471.	4.9	15
29	FluxnetLSM R package (v1.0): a community tool for processing FLUXNET data for use in land surface modelling. Geoscientific Model Development, 2017, 10, 3379-3390.	3.6	14
30	Bridge to the future: Important lessons from 20Âyears of ecosystem observations made by the OzFlux network. Global Change Biology, 2022, 28, 3489-3514.	9.5	14
31	Thirty-eight years of CO ₂ fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems. Biogeosciences, 2022, 19, 491-515.	3.3	13
32	Towards speciesâ€level forecasts of droughtâ€induced tree mortality risk. New Phytologist, 2022, 235, 94-110.	7.3	12
33	Amplification of risks to water supply at 1.5 ${\rm \^{A}^{\circ}C}$ and 2 ${\rm \^{A}^{\circ}C}$ in drying climates: a case study for Melbourne, Australia. Environmental Research Letters, 2019, 14, 084028.	5.2	11
34	How representative are FLUXNET measurements of surface fluxes during temperature extremes?. Biogeosciences, 2019, 16, 1829-1844.	3.3	11
35	A flux tower dataset tailored for land model evaluation. Earth System Science Data, 2022, 14, 449-461.	9.9	11
36	Toward a Robust, Impactâ€Based, Predictive Drought Metric. Water Resources Research, 2022, 58, .	4.2	10

#	Article	IF	CITATIONS
37	High impact compound events in Australia. Weather and Climate Extremes, 2022, 36, 100457.	4.1	8
38	Evaluation of the CABLEv2.3.4 Land Surface Model Coupled to NUâ€WRFv3.9.1.1 in Simulating Temperature and Precipitation Means and Extremes Over CORDEX AustralAsia Within a WRF Physics Ensemble. Journal of Advances in Modeling Earth Systems, 2019, 11, 4466-4488.	3.8	7
39	Reconciling historical changes in the hydrological cycle over land. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	7
40	Hydrological evaluation of the LPX dynamic global vegetation model for small river catchments in the UK. Hydrological Processes, 2014, 28, 1939-1950.	2.6	5
41	How do groundwater dynamics influence heatwaves in southeast Australia?. Weather and Climate Extremes, 2022, 37, 100479.	4.1	3