José Tadeu Abreu de Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7758763/publications.pdf

Version: 2024-02-01

87 papers 2,249 citations

218381 26 h-index 253896 43 g-index

88 all docs 88 docs citations

88 times ranked 2383 citing authors

#	Article	IF	Citations
1	ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor. Journal of Biomolecular Structure and Dynamics, 2022, 40, 5493-5506.	2.0	9
2	Quantum biochemistry, molecular docking, and dynamics simulation revealed synthetic peptides induced conformational changes affecting the topology of the catalytic site of SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, 2022, 40, 8925-8937.	2.0	8
3	A peroxidase purified from cowpea roots possesses high thermal stability and displays antifungal activity against Colletotrichum gloeosporioides and Fusarium oxysporum. Biocatalysis and Agricultural Biotechnology, 2022, 42, 102322.	1.5	5
4	Synergistic Antifungal Activity of Synthetic Peptides and Antifungal Drugs against Candida albicans and C. parapsilosis Biofilms. Antibiotics, 2022, 11, 553.	1.5	5
5	Neutralizing Effect of Synthetic Peptides toward SARS-CoV-2. ACS Omega, 2022, 7, 16222-16234.	1.6	7
6	JcTI-Pepl, a synthetic peptide bioinspired in the trypsin inhibitor from Jatropha curcas, presents potent inhibitory activity against C.Âkrusei, a neglected pathogen. Biochimie, 2022, 200, 107-118.	1.3	1
7	Synthetic peptides against Trichophyton mentagrophytes and T. rubrum: Mechanisms of action and efficiency compared to griseofulvin and itraconazole. Life Sciences, 2021, 265, 118803.	2.0	8
8	Inhibition of Protease and Egg Hatching of Haemonchus contortus by Soybean Seed Exudates. Journal of Parasitology, 2021, 107, 23-28.	0.3	1
9	New Insights into Anthelmintic Mechanisms of Action of a Synthetic Peptide: An Ultrastructural and Nanomechanical Approach. Polymers, 2021, 13, 2370.	2.0	4
10	Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sciences, 2021, 278, 119647.	2.0	64
11	Synthetic antimicrobial peptides control Penicillium digitatum infection in orange fruits. Food Research International, 2021, 147, 110582.	2.9	21
12	Computational approach, scanning electron and fluorescence microscopies revealed insights into the action mechanisms of anticandidal peptide Mo-CBP3-PepIII. Life Sciences, 2021, 281, 119775.	2.0	6
13	Scanning electron microscopy reveals deleterious effects of Moringa oleifera seed exuded proteins on root-knot nematode Meloidogyne incognita eggs. International Journal of Biological Macromolecules, 2020, 154, 1237-1244.	3.6	15
14	RcAlb-PepII, a synthetic small peptide bioinspired in the 2S albumin from the seed cake of Ricinus communis, is a potent antimicrobial agent against Klebsiella pneumoniae and Candida parapsilosis. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183092.	1.4	38
15	H2O2Accumulation, Host Cell Death and Differential Levels of Proteins Related to Photosynthesis, Redox Homeostasis, and Required for Viral Replication Explain the Resistance of EMS-mutagenized Cowpea to Cowpea Severe Mosaic Virus. Journal of Plant Physiology, 2020, 245, 153110.	1.6	6
16	Role of membrane sterol and redox system in the anti-candida activity reported for Mo-CBP2, a protein from Moringa oleifera seeds. International Journal of Biological Macromolecules, 2020, 143, 814-824.	3.6	13
17	A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. International Journal of Biological Macromolecules, 2020, 164, 66-76.	3.6	38
18	Mo-CBP4, a purified chitin-binding protein from Moringa oleifera seeds, is a potent antidermatophytic protein: In vitro mechanisms of action, in vivo effect against infection, and clinical application as a hydrogel for skin infection. International Journal of Biological Macromolecules, 2020, 149, 432-442.	3.6	19

#	Article	IF	CITATIONS
19	Identification, characterization, and expression analysis of cowpea (Vigna unguiculata [L.] Walp.) miRNAs in response to cowpea severe mosaic virus (CPSMV) challenge. Plant Cell Reports, 2020, 39, 1061-1078.	2.8	8
20	Orally hypoglycemic activity of an insulin mimetic glycoprotein isolated from Cnidoscolus quercifolius Pohl. (Euphorbiaceae) seeds, Cq-IMP. International Journal of Biological Macromolecules, 2020, 159, 886-895.	3.6	5
21	Synthetic antimicrobial peptides: From choice of the best sequences to action mechanisms. Biochimie, 2020, 175, 132-145.	1.3	71
22	Anticandidal activity of synthetic peptides: Mechanism of action revealed by scanning electron and fluorescence microscopies and synergism effect with nystatin. Journal of Peptide Science, 2020, 26, e3249.	0.8	17
23	Antidermatophytic activity of synthetic peptides: Action mechanisms and clinical application as adjuvants to enhance the activity and decrease the toxicity of Griseofulvin. Mycoses, 2020, 63, 979-992.	1.8	10
24	Machaerium acutifolium lectin alters membrane structure and induces ROS production in Candida parapsilosis. International Journal of Biological Macromolecules, 2020, 163, 19-25.	3.6	11
25	Gene expression during development and overexpression after Cercospora kikuchii and salicylic acid challenging indicate defensive roles of the soybean toxin. Plant Cell Reports, 2020, 39, 669-682.	2.8	1
26	In vitro toxicological characterisation of the antifungal compound soybean toxin (SBTX). Toxicology in Vitro, 2020, 65, 104824.	1.1	1
27	CITI, a Kunitz trypsin inhibitor purified from Cassia leiandra Benth. seeds, exerts a candidicidal effect on Candida albicans by inducing oxidative stress and necrosis. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183032.	1.4	18
28	Gene expression and spatiotemporal localization of antifungal chitin-binding proteins during Moringa oleifera seed development and germination. Planta, 2019, 249, 1503-1519.	1.6	13
29	Mo-CBP3, a 2S albumin from Moringa oleifera, is a complex mixture of isoforms that arise from different post-translational modifications. Plant Physiology and Biochemistry, 2019, 140, 68-77.	2.8	6
30	ClCPI, a cysteine protease inhibitor purified from Cassia leiandra seeds has antifungal activity against Candida tropicalis by inducing disruption of the cell surface. International Journal of Biological Macromolecules, 2019, 133, 1115-1124.	3.6	10
31	The expression of the genes involved in redox metabolism and hydrogen peroxide balance is associated with the resistance of cowpea [Vigna unguiculata (L.) Walp.] to the hemibiotrophic fungus Colletotrichum gloeosporioides. Journal of Plant Physiology, 2019, 233, 73-83.	1.6	7
32	Mo-CBP3-Pepl, Mo-CBP3-Pepll, and Mo-CBP3-Peplll are synthetic antimicrobial peptides active against human pathogens by stimulating ROS generation and increasing plasma membrane permeability. Biochimie, 2019, 157, 10-21.	1.3	57
33	A resistant cowpea (Vigna unguiculata [L.] Walp.) genotype became susceptible to cowpea severe mosaic virus (CPSMV) after exposure to salt stress. Journal of Proteomics, 2019, 194, 200-217.	1.2	18
34	A cysteine protease from the latex of Ficus benjamina has in vitro anthelmintic activity against Haemonchus contortus. Brazilian Journal of Veterinary Parasitology, 2018, 27, 473-480.	0.2	12
35	A Bowman–Birk Inhibitor from the Seeds of <i>Luetzelburgia auriculata</i> Inhibits <i>Staphylococcus aureus</i> Growth by Promoting Severe Cell Membrane Damage. Journal of Natural Products, 2018, 81, 1497-1507.	1.5	15
36	Myracrodruon urundeuva seed exudates proteome and anthelmintic activity against Haemonchus contortus. PLoS ONE, 2018, 13, e0200848.	1.1	15

#	Article	IF	CITATIONS
37	A chemically sulfated derivative galactomannan from Adenanthera pavonina seeds elicits defense-related responses in cowpea and confers protection against Colletotrichum gloeosporioides. Journal of Biological Control, 2018, 33, 7-17.	0.2	0
38	Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolytic action. Biochimie, 2017, 135, 89-103.	1.3	28
39	Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata) Tj ETQq1 176-91.	0.784314 1.2	4 rgBT /Ove 17
40	A trypsin inhibitor purified from Cassia leiandra seeds has insecticidal activity against Aedes aegypti. Process Biochemistry, 2017, 57, 228-238.	1.8	31
41	Photosynthetic and biochemical mechanisms of an EMS-mutagenized cowpea associated with its resistance to cowpea severe mosaic virus. Plant Cell Reports, 2017, 36, 219-234.	2.8	28
42	Insulin-like plant proteins as potential innovative drugs to treat diabetesâ€"The Moringa oleifera case study. New Biotechnology, 2017, 39, 99-109.	2.4	19
43	A Protein Isolate from Moringa oleifera Leaves Has Hypoglycemic and Antioxidant Effects in Alloxan-Induced Diabetic Mice. Molecules, 2017, 22, 271.	1.7	50
44	A Chitin-binding Protein Purified from Moringa oleifera Seeds Presents Anticandidal Activity by Increasing Cell Membrane Permeability and Reactive Oxygen Species Production. Frontiers in Microbiology, 2017, 8, 980.	1.5	41
45	Reference gene identification for real-time PCR analyses in soybean leaves under fungus (Cercospora) Tj ETQq1 1 2016, 45, 191-199.	0.784314 0.5	rgBT /Overl 8
46	A 2S Albumin from the Seed Cake of <i>Ricinus communis</i> Inhibits Trypsin and Has Strong Antibacterial Activity against Human Pathogenic Bacteria. Journal of Natural Products, 2016, 79, 2423-2431.	1.5	18
47	Drought increases cowpea (Vigna unguiculata [L.] Walp.) susceptibility to cowpea severe mosaic virus (CPSMV) at early stage of infection. Plant Physiology and Biochemistry, 2016, 109, 91-102.	2.8	12
48	Label-free Proteomic Reveals that Cowpea Severe Mosaic Virus Transiently Suppresses the Host Leaf Protein Accumulation During the Compatible Interaction with Cowpea (<i>Vigna unguiculata</i> [L.]) Tj ETQq0 0	Oir g BT /O\	venslock 10 T
49	Increased Levels of Antinutritional and/or Defense Proteins Reduced the Protein Quality of a Disease-Resistant Soybean Cultivar. Nutrients, 2015, 7, 6038-6054.	1.7	4
50	Mo-CBP3, an Antifungal Chitin-Binding Protein from Moringa oleifera Seeds, Is a Member of the 2S Albumin Family. PLoS ONE, 2015, 10, e0119871.	1.1	47
51	Proteome of Soybean Seed Exudates Contains Plant Defense-Related Proteins Active against the Root-Knot Nematode <i>Meloidogyne incognita</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 5335-5343.	2.4	24
52	H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp.]. Fungal Biology, 2015, 119, 747-757.	1.1	23
53	A protein extract and a cysteine protease inhibitor enriched fraction from Jatropha curcas seed cake have in vitro anti-Toxoplasma gondii activity. Experimental Parasitology, 2015, 153, 111-117.	0.5	7
54	Castor bean cake contains a trypsin inhibitor that displays antifungal activity against Colletotrichum gloeosporioides and inhibits the midgut proteases of the dengue mosquito larvae. Industrial Crops and Products, 2015, 70, 48-55.	2.5	24

#	Article	IF	Citations
55	Cowpea– <i>Meloidogyne incognita</i> interaction: Root proteomic analysis during early stages of nematode infection. Proteomics, 2015, 15, 1746-1759.	1.3	15
56	Proteomic analysis of responsive stem proteins of resistant and susceptible cashew plants after Lasiodiplodia theobromae infection. Journal of Proteomics, 2015, 113, 90-109.	1,2	18
57	Enhanced Synthesis of Antioxidant Enzymes, Defense Proteins and Leghemoglobin in Rhizobium-Free Cowpea Roots after Challenging with Meloydogine incognita. Proteomes, 2014, 2, 527-549.	1.7	12
58	JcTI-I: a novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment. Frontiers in Microbiology, 2014, 5, 5.	1,5	42
59	Purification, characterization and antifungal activity of LPA a lectin from Pachira aquatica seeds: their possible role in plant defence. BMC Proceedings, 2014, 8, .	1.8	2
60	Proteomics changes during the incompatible interaction between cowpea and Colletotrichum gloeosporioides (Penz.) Penz and Sacc. Plant Science, 2014, 217-218, 158-175.	1.7	12
61	New Insights into the Structure and Mode of Action of Mo-CBP3, an Antifungal Chitin-Binding Protein of Moringa oleifera Seeds. PLoS ONE, 2014, 9, e111427.	1.1	43
62	Soybean Toxin (SBTX) Impairs Fungal Growth by Interfering with Molecular Transport, Carbohydrate/Amino Acid Metabolism and Drug/Stress Responses. PLoS ONE, 2013, 8, e70425.	1.1	6
63	Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams. Journal of Proteomics, 2012, 75, 4436-4456.	1.2	83
64	Biochemical, physicochemical and molecular characterization of a genuine 2-Cys-peroxiredoxin purified from cowpea [Vigna unguiculata (L.) Walpers] leaves. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1128-1140.	1.1	2
65	A novel chitinâ€binding protein from <i>Moringa oleifera</i> seed with potential for plant disease control. Biopolymers, 2012, 98, 406-415.	1.2	48
66	Differential expression of antioxidant enzymes and PR-proteins in compatible and incompatible interactions of cowpea (Vigna unguiculata) and the root-knot nematode Meloidogyne incognita. Plant Physiology and Biochemistry, 2012, 51, 145-152.	2.8	45
67	Towards a better understanding of Ipomoea asarifolia toxicity: Evidence of the involvement of a leaf lectin. Toxicon, 2011, 58, 502-508.	0.8	7
68	Purification of a Chitin-Binding Protein from Moringa oleifera Seeds with Potential to Relieve Pain and Inflammation. Protein and Peptide Letters, 2011, 18, 1078-1085.	0.4	21
69	Bactericidal Activity Identified in 2S Albumin from Sesame Seeds and In silico Studies of Structureâ€"Function Relations. Protein Journal, 2011, 30, 340-350.	0.7	22
70	Effects of a Novel Pathogenesis-Related Class 10 (PR-10) Protein from Crotalaria pallida Roots with Papain Inhibitory Activity against Root-Knot Nematode Meloidogyne incognita. Journal of Agricultural and Food Chemistry, 2010, 58, 4145-4152.	2.4	42
71	Soybean Toxin (SBTX), a Protein from Soybeans That Inhibits the Life Cycle of Plant and Human Pathogenic Fungi. Journal of Agricultural and Food Chemistry, 2010, 58, 10356-10363.	2.4	15
72	A ConA-like Lectin from <i>Dioclea guianensis</i> Benth. Has Antifungal Activity against <i>Colletotrichum gloeosporioides</i> , unlike Its Homologues, ConM and ConA. Journal of Agricultural and Food Chemistry, 2010, 58, 4090-4096.	2.4	18

#	Article	IF	CITATIONS
73	SBTX, a new toxic protein distinct from soyatoxin and other toxic soybean [Glycine max] proteins, and its inhibitory effect on Cercospora sojina growth. Toxicon, 2008, 51, 952-963.	0.8	9
74	Antifungal activity of plant and bacterial ureases. Toxicon, 2007, 50, 971-983.	0.8	72
75	Induction of an anionic peroxidase in cowpea leaves by exogenous salicylic acid. Journal of Plant Physiology, 2006, 163, 1040-1048.	1.6	42
76	An antifungal peptide from passion fruit (Passiflora edulis) seeds with similarities to 2S albumin proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1141-1146.	1.1	64
77	A cotyledonary agglutinin from Luetzelburgia auriculata inhibits the fungal growth of Colletotrichum lindemuthianum, Fusarium solani and Aspergillus niger and impairs glucose-stimulated acidification of the incubation medium by Saccharomyces cerevisiae cells. Plant Science. 2005. 169. 629-639.	1.7	12
78	In vitro andin vivo digestibility of the albumin and globulin fractions of eight Brazilian cowpea[Vigna unguiculata(L) Walp] cultivars. Journal of the Science of Food and Agriculture, 2004, 84, 1823-1830.	1.7	4
79	Cratylia argentea seed lectin, a possible defensive protein against plant-eating organisms: effects on rat metabolism and gut histology. Food and Chemical Toxicology, 2004, 42, 1737-1747.	1.8	12
80	Antinutritional properties of plant lectins. Toxicon, 2004, 44, 385-403.	0.8	295
81	Purification and physicochemical characterization of a cotyledonary lectin from Luetzelburgia auriculata. Phytochemistry, 2002, 61, 301-310.	1.4	32
82	DROUGHT-INDUCED EFFECTS AND RECOVERY OF NITRATE ASSIMILATION AND NODULE ACTIVITY IN COWPEA PLANTS INOCULATED WITH BRADYRHIZOBIUM SPP. UNDER MODERATE NITRATE LEVEL. Brazilian Journal of Microbiology, 2001, 32, 187-194.	0.8	49
83	Nutritional study of two Brazilian soybean (Glycine max) cultivars differing in the contents of antinutritional and toxic proteins. Journal of Nutritional Biochemistry, 2001, 12, 55-62.	1.9	44
84	Composition and nutritional properties of seeds from Pachira aquatica Aubl, Sterculia striata St Hil et Naud and Terminalia catappa Linn. Food Chemistry, 2000, 70, 185-191.	4.2	70
85	Composition, toxic and antinutritional factors of newly developed cultivars of Brazilian soybean (Glycine max). Journal of the Science of Food and Agriculture, 1997, 75, 419-426.	1.7	63
86	Canavalia brasiliensis seeds. Protein quality and nutritional implications of dietary lectin. Journal of the Science of Food and Agriculture, 1994, 64, 417-424.	1.7	25
87	PURIFICATION AND PARTIAL CHARACTERIZATION OF A LECTIN FROM THE SEEDS OF DIOCLEA GUIANENSIS. Journal of Food Biochemistry, 1991, 15, 137-154.	1.2	41