Paliza Shrestha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7758735/publications.pdf

Version: 2024-02-01

1307594 1372567 11 326 7 10 citations g-index h-index papers 11 11 11 361 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecological Engineering, 2018, 112, 116-131.	3.6	124
2	Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching. International Journal of Environmental Research and Public Health, 2019, 16, 1261.	2.6	56
3	Nutrient Leaching from Compost: Implications for Bioretention and Other Green Stormwater Infrastructure. Journal of Sustainable Water in the Built Environment, 2017, 3, .	1.6	51
4	Quantifying nutrient recovery efficiency and loss from compost-based urban agriculture. PLoS ONE, 2020, 15, e0230996.	2.5	27
5	Excess phosphorus from compost applications in urban gardens creates potential pollution hotspots. Environmental Research Communications, 2019, 1, 091007.	2.3	22
6	Soil Media CO2 and N2O Fluxes Dynamics from Sand-Based Roadside Bioretention Systems. Water (Switzerland), 2018, 10, 185.	2.7	12
7	Investigating potential hydrological ecosystem services in urban gardens through soil amendment experiments and hydrologic models. Urban Ecosystems, 2022, 25, 867-878.	2.4	11
8	Efficacy of Spent Lime as a Soil Amendment for Nutrient Retention in Bioretention Green Stormwater Infrastructure. Water (Switzerland), 2019, 11, 1575.	2.7	8
9	Influence of low-phosphorus compost and vegetation in bioretention for nutrient and sediment control in runoff from a dairy farm production area. Ecological Engineering, 2020, 150, 105821.	3.6	6
10	URBAN HEAT ISLAND MITIGATION DUE TO ENHANCED EVAPOTRANSPIRATION IN AN URBAN GARDEN IN SAINT PAUL, MINNESOTA, USA. , 2020, , .		5
11	Measuring the Fate of Compost-Derived Phosphorus in Native Soil below Urban Gardens. International Journal of Environmental Research and Public Health, 2019, 16, 3998.	2.6	4