Lajos Szeles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7758643/publications.pdf

Version: 2024-02-01

		471061	752256
20	1,691	17	20
papers	citations	h-index	g-index
20	20	20	3311
20	20	20	3311
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Specific enhancer selection by IRF3, IRF5Âand IRF9 is determined by ISRE half-sites, 5′ and 3′ flanking bases, collaborating transcription factors and the chromatin environment in a combinatorial fashion. Nucleic Acids Research, 2020, 48, 589-604.	6.5	21
2	The Cell-Free Expression of MiR200 Family Members Correlates with Estrogen Sensitivity in Human Epithelial Ovarian Cells. International Journal of Molecular Sciences, 2020, 21, 9725.	1.8	7
3	Circulating miRNA Profiling in Plasma Samples of Ovarian Cancer Patients. International Journal of Molecular Sciences, 2019, 20, 4533.	1.8	29
4	Signal Integration of IFN-I and IFN-II With TLR4 Involves Sequential Recruitment of STAT1-Complexes and NFIºB to Enhance Pro-inflammatory Transcription. Frontiers in Immunology, 2019, 10, 1253.	2.2	34
5	Labelled regulatory elements are pervasive features of the macrophage genome and are dynamically utilized by classical and alternative polarization signals. Nucleic Acids Research, 2019, 47, 2778-2792.	6.5	14
6	9-cis-13,14-Dihydroretinoic Acid Is an Endogenous Retinoid Acting as RXR Ligand in Mice. PLoS Genetics, 2015, 11, e1005213.	1.5	98
7	TLR3-Mediated CD8+ Dendritic Cell Activation Is Coupled with Establishment of a Cell-Intrinsic Antiviral State. Journal of Immunology, 2015, 195, 1025-1033.	0.4	26
8	RDH10, RALDH2, and CRABP2 are required components of PPARÎ ³ -directed ATRA synthesis and signaling in human dendritic cells. Journal of Lipid Research, 2013, 54, 2458-2474.	2.0	26
9	Genome Wide Mapping Reveals PDE4B as an IL-2 Induced STAT5 Target Gene in Activated Human PBMCs and Lymphoid Cancer Cells. PLoS ONE, 2013, 8, e57326.	1.1	10
10	Novel Murine Dendritic Cell Lines: A Powerful Auxiliary Tool for Dendritic Cell Research. Frontiers in Immunology, 2012, 3, 331.	2.2	137
11	Nuclear Hormone Receptors Enable Macrophages and Dendritic Cells to Sense Their Lipid Environment and Shape Their Immune Response. Physiological Reviews, 2012, 92, 739-789.	13.1	195
12	Chronic Obstructive Pulmonary Disease-Specific Gene Expression Signatures of Alveolar Macrophages as well as Peripheral Blood Monocytes Overlap and Correlate with Lung Function. Respiration, 2011, 81, 499-510.	1.2	46
13	Peroxisome Proliferator-Activated Receptor \hat{I}^3 -Regulated Cathepsin D Is Required for Lipid Antigen Presentation by Dendritic Cells. Journal of Immunology, 2011, 187, 240-247.	0.4	21
14	STAT6 Transcription Factor Is a Facilitator of the Nuclear Receptor PPARÎ ³ -Regulated Gene Expression in Macrophages and Dendritic Cells. Immunity, 2010, 33, 699-712.	6.6	352
15	Factor XIII-A is involved in the regulation of gene expression in alternatively activated human macrophages. Thrombosis and Haemostasis, 2010, 104, 709-717.	1.8	32
16	Activation of Liver X Receptor Sensitizes Human Dendritic Cells to Inflammatory Stimuli. Journal of Immunology, 2010, 184, 5456-5465.	0.4	65
17	Research Resource: Transcriptome Profiling of Genes Regulated by RXR and Its Permissive and Nonpermissive Partners in Differentiating Monocyte-Derived Dendritic Cells. Molecular Endocrinology, 2010, 24, 2218-2231.	3.7	67
18	1,25-Dihydroxyvitamin D3 Is an Autonomous Regulator of the Transcriptional Changes Leading to a Tolerogenic Dendritic Cell Phenotype. Journal of Immunology, 2009, 182, 2074-2083.	0.4	209

#	Article	IF	CITATIONS
19	PPARÎ 3 in immunity and inflammation: cell types and diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1014-1030.	1.2	138
20	Peroxisome Proliferator-activated Receptor \hat{I}^3 -regulated ABCG2 Expression Confers Cytoprotection to Human Dendritic Cells. Journal of Biological Chemistry, 2006, 281, 23812-23823.	1.6	164