Thomas Happe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7758483/publications.pdf Version: 2024-02-01

THOMAS HADDE

#	Article	IF	CITATIONS
1	The oxygen-resistant [FeFe]-hydrogenase CbA5H harbors an unknown radical signal. Chemical Science, 2022, 13, 7289-7294.	3.7	3
2	One isoform for one task? The second hydrogenase of Chlamydomonas reinhardtii prefers hydrogen uptake. International Journal of Hydrogen Energy, 2021, 46, 7165-7175.	3.8	11
3	Site-selective protonation of the one-electron reduced cofactor in [FeFe]-hydrogenase. Dalton Transactions, 2021, 50, 3641-3650.	1.6	13
4	A safety cap protects hydrogenase from oxygen attack. Nature Communications, 2021, 12, 756.	5.8	42
5	Fine-tuning of FeS proteins monitored via pulsed EPR redox potentiometry at Q-band. Biophysical Reports, 2021, 1, 100016.	0.7	5
6	Electrochemical control of [FeFe]-hydrogenase single crystals reveals complex redox populations at the catalytic site. Dalton Transactions, 2021, 50, 12655-12663.	1.6	11
7	The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20520-20529.	3.3	48
8	Solvent dynamics play a decisive role in the complex formation of biologically relevant redox proteins. Physical Chemistry Chemical Physics, 2020, 22, 7451-7459.	1.3	10
9	Modelling Photosynthesis with Zn II â€Protoporphyrin Allâ€DNA Gâ€Quadruplex/Aptamer Scaffolds. Angewandte Chemie, 2020, 132, 9248-9255.	1.6	8
10	Shedding Light on Proton and Electron Dynamics in [FeFe] Hydrogenases. Journal of the American Chemical Society, 2020, 142, 5493-5497.	6.6	38
11	Modelling Photosynthesis with Zn II â€Protoporphyrin Allâ€DNA Gâ€Quadruplex/Aptamer Scaffolds. Angewandte Chemie - International Edition, 2020, 59, 9163-9170.	7.2	17
12	The final steps of [FeFe]-hydrogenase maturation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15802-15810.	3.3	19
13	Loss of Specific Active-Site Iron Atoms in Oxygen-Exposed [FeFe]-Hydrogenase Determined by Detailed X-ray Structure Analyses. Journal of the American Chemical Society, 2019, 141, 17721-17728.	6.6	26
14	Geometry of the Catalytic Active Site in [FeFe]-Hydrogenase Is Determined by Hydrogen Bonding and Proton Transfer. ACS Catalysis, 2019, 9, 9140-9149.	5.5	30
15	How [FeFe]-Hydrogenase Facilitates Bidirectional Proton Transfer. Journal of the American Chemical Society, 2019, 141, 17394-17403.	6.6	38
16	Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix. Science Advances, 2019, 5, eaay1394.	4.7	21
17	Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by ⁵⁷ Fe Nuclear Resonance X-ray Scattering and Quantum Mechanics/Molecular Mechanics Analyses. Inorganic Chemistry, 2019, 58, 4000-4013.	1.9	19
18	His-Ligation to the [4Fe–4S] Subcluster Tunes the Catalytic Bias of [FeFe] Hydrogenase. Journal of the American Chemical Society, 2019, 141, 472-481.	6.6	32

#	Article	IF	CITATIONS
19	Rational redesign of the ferredoxin-NADP+-oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H2-production. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 253-262.	0.5	18
20	Protonation/reduction dynamics at the [4Fe–4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Physical Chemistry Chemical Physics, 2018, 20, 3128-3140.	1.3	76
21	Hydrogen and oxygen trapping at the H-cluster of [FeFe]-hydrogenase revealed by site-selective spectroscopy and QM/MM calculations. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 28-41.	0.5	39
22	Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases. Nature Communications, 2018, 9, 4726.	5.8	60
23	[FeFe]-hydrogenases from green algae. Methods in Enzymology, 2018, 613, 203-230.	0.4	6
24	In memory of Achim Trebst (1929–2017): a pioneer of photosynthesis research. Photosynthesis Research, 2018, 137, 341-359.	1.6	1
25	Spectroscopical Investigations on the Redox Chemistry of [FeFe]-Hydrogenases in the Presence of Carbon Monoxide. Molecules, 2018, 23, 1669.	1.7	9
26	Flavodiiron-Mediated O ₂ Photoreduction Links H ₂ Production with CO ₂ Fixation during the Anaerobic Induction of Photosynthesis. Plant Physiology, 2018, 177, 1639-1649.	2.3	47
27	Iron–sulphur cluster biogenesisviathe SUF pathway. Metallomics, 2018, 10, 1038-1052.	1.0	22
28	The plasticity of redox cofactors: from metalloenzymes to redox-active DNA. Nature Reviews Chemistry, 2018, 2, 231-243.	13.8	13
29	Preventing the coffee-ring effect and aggregate sedimentation by <i>in situ</i> gelation of monodisperse materials. Chemical Science, 2018, 9, 7596-7605.	3.7	53
30	The structurally unique photosynthetic Chlorella variabilis NC64A hydrogenase does not interact with plant-type ferredoxins. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 771-778.	0.5	14
31	Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3843-3848.	3.3	47
32	Compartmentalisation of [FeFe]â€hydrogenase maturation in <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2017, 90, 1134-1143.	2.8	23
33	Sunlightâ€Dependent Hydrogen Production by Photosensitizer/Hydrogenase Systems. ChemSusChem, 2017, 10, 894-902.	3.6	44
34	Proton oupled Reduction of the Catalytic [4Feâ€4S] Cluster in [FeFe]â€Hydrogenases. Angewandte Chemie - International Edition, 2017, 56, 16503-16506.	7.2	56
35	Influence of the [4Fe–4S] cluster coordinating cysteines on active site maturation and catalytic properties of <i>C. reinhardtii</i> [FeFe]-hydrogenase. Chemical Science, 2017, 8, 8127-8137.	3.7	20
36	Bridging Hydride at Reduced H-Cluster Species in [FeFe]-Hydrogenases Revealed by Infrared Spectroscopy, Isotope Editing, and Quantum Chemistry. Journal of the American Chemical Society, 2017, 139, 12157-12160.	6.6	53

#	Article	IF	CITATIONS
37	Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases. Nature Communications, 2017, 8, 16115.	5.8	93
38	Protonengekoppelte Reduktion des katalytischen [4Feâ€4S]â€Zentrums in [FeFe]â€Hydrogenasen. Angewandte Chemie, 2017, 129, 16728-16732.	1.6	7
39	Interplay between CN [–] Ligands and the Secondary Coordination Sphere of the H-Cluster in [FeFe]-Hydrogenases. Journal of the American Chemical Society, 2017, 139, 18222-18230.	6.6	42
40	Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity. Dalton Transactions, 2017, 46, 16947-16958.	1.6	48
41	Association of Ferredoxin:NADP+ oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii. Photosynthesis Research, 2017, 134, 291-306.	1.6	52
42	Chlamydomonas: Hydrogenase and Hydrogen Production. Microbiology Monographs, 2017, , 21-44.	0.3	0
43	[FeFe]â€Hydrogenase with Chalcogenide Substitutions at the Hâ€Cluster Maintains Full H ₂ Evolution Activity. Angewandte Chemie - International Edition, 2016, 55, 8396-8400.	7.2	53
44	Vibrational spectroscopy reveals the initial steps of biological hydrogen evolution. Chemical Science, 2016, 7, 6746-6752.	3.7	52
45	Electrochemical Investigations of the Mechanism of Assembly of the Active-Site H-Cluster of [FeFe]-Hydrogenases. Journal of the American Chemical Society, 2016, 138, 15227-15233.	6.6	38
46	[FeFe]â€Hydrogenase with Chalcogenide Substitutions at the H luster Maintains Full H ₂ Evolution Activity. Angewandte Chemie, 2016, 128, 8536-8540.	1.6	15
47	A structural view of synthetic cofactor integration into [FeFe]-hydrogenases. Chemical Science, 2016, 7, 959-968.	3.7	122
48	Lyophilization protects [FeFe]-hydrogenases against O2-induced H-cluster degradation. Scientific Reports, 2015, 5, 13978.	1.6	26
49	A Redox Hydrogel Protects the O ₂ ‣ensitive [FeFe]â€Hydrogenase from <i>Chlamydomonas reinhardtii</i> from Oxidative Damage. Angewandte Chemie - International Edition, 2015, 54, 12329-12333.	7.2	87
50	7. Eukaryotic microalgae in biotechnological applications. , 2015, , 165-196.		0
51	How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³ C ENDOR of Direct Fe–C Coordination and Order of Electron and Proton Transfers. Journal of the American Chemical Society, 2015, 137, 5381-5389.	6.6	14
52	Hydride Binding to the Active Site of [FeFe]-Hydrogenase. Inorganic Chemistry, 2014, 53, 12164-12177.	1.9	58
53	Electronic and molecular structures of the active-site H-cluster in [FeFe]-hydrogenase determined by site-selective X-ray spectroscopy and quantum chemical calculations. Chemical Science, 2014, 5, 1187-1203.	3.7	60
54	New Redox States Observed in [FeFe] Hydrogenases Reveal Redox Coupling Within the H-Cluster. Journal of the American Chemical Society, 2014, 136, 11339-11346.	6.6	121

#	Article	IF	CITATIONS
55	Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energy and Environmental Science, 2014, 7, 3296-3301.	15.6	77
56	Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nature Chemical Biology, 2013, 9, 607-609.	3.9	316
57	Pyruvate:Ferredoxin Oxidoreductase Is Coupled to Light-independent Hydrogen Production in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2013, 288, 4368-4377.	1.6	73
58	Molecular basis of [FeFe]-hydrogenase function. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 974-985.	0.5	88
59	Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature, 2013, 499, 66-69.	13.7	597
60	Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11516-11521.	3.3	158
61	Differential Expression of the <i>Chlamydomonas</i> [FeFe]-Hydrogenase-Encoding <i>HYDA1</i> Gene Is Regulated by the COPPER RESPONSE REGULATOR1 Â Â. Plant Physiology, 2012, 159, 1700-1712.	2.3	30
62	Importance of the Protein Framework for Catalytic Activity of [FeFe]-Hydrogenases. Journal of Biological Chemistry, 2012, 287, 1489-1499.	1.6	129
63	Identification and Characterization of the "Superâ€Reduced―State of the Hâ€Cluster in [FeFe] Hydrogenase: A New Building Block for the Catalytic Cycle?. Angewandte Chemie - International Edition, 2012, 51, 11458-11462.	7.2	184
64	Inhibition of [FeFe]-Hydrogenases by Formaldehyde and Wider Mechanistic Implications for Biohydrogen Activation. Journal of the American Chemical Society, 2012, 134, 7553-7557.	6.6	31
65	Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta, 2012, 235, 729-745.	1.6	138
66	Formaldehyde—A Rapid and Reversible Inhibitor of Hydrogen Production by [FeFe]-Hydrogenases. Journal of the American Chemical Society, 2011, 133, 1282-1285.	6.6	30
67	O2 Reactions at the Six-iron Active Site (H-cluster) in [FeFe]-Hydrogenase. Journal of Biological Chemistry, 2011, 286, 40614-40623.	1.6	80
68	A pyruvate formate lyaseâ€deficient <i>Chlamydomonas reinhardtii</i> strain provides evidence for a link between fermentation and hydrogen production in green algae. Plant Journal, 2011, 66, 330-340.	2.8	61
69	The [FeFe]-hydrogenase maturation protein HydF contains a H-cluster like [4Fe4S]-2Fe site. FEBS Letters, 2011, 585, 225-230.	1.3	53
70	Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 919-926.	0.5	111
71	Light driven hydrogen production in protein based semi-artificial systems. Bioresource Technology, 2011, 102, 8493-8500.	4.8	29
72	Tailorâ€Made Modification of a Gold Surface for the Chemical Binding of a Highâ€Activity [FeFe] Hydrogenase. European Journal of Inorganic Chemistry, 2011, 2011, 1138-1146.	1.0	15

#	Article	IF	CITATIONS
73	Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20988-20991.	3.3	156
74	Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in <i>Chlamydomonas reinhardtii</i> . Plant Cell, 2011, 23, 2619-2630.	3.1	176
75	Multiple ferredoxin isoforms in Chlamydomonas reinhardtii – Their role under stress conditions and biotechnological implications. European Journal of Cell Biology, 2010, 89, 998-1004.	1.6	67
76	The [FeFe]â€hydrogenase maturase HydF from <i>Clostridium acetobutylicum</i> contains a CO and CN ^{â^'} ligated iron cofactor. FEBS Letters, 2010, 584, 638-642.	1.3	94
77	Characterization of the Key Step for Light-driven Hydrogen Evolution in Green Algae. Journal of Biological Chemistry, 2009, 284, 36620-36627.	1.6	111
78	A novel, anaerobically induced ferredoxin in <i>Chlamydomonas reinhardtii</i> . FEBS Letters, 2009, 583, 325-329.	1.3	60
79	Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynthesis Research, 2009, 102, 523-540.	1.6	171
80	Immobilization of the [FeFe]-hydrogenase CrHydA1 on a gold electrode: Design of a catalytic surface for the production of molecular hydrogen. Journal of Biotechnology, 2009, 142, 3-9.	1.9	43
81	The Structure of the Active Site H-Cluster of [FeFe] Hydrogenase from the Green Alga Chlamydomonas reinhardtii Studied by X-ray Absorption Spectroscopy. Biochemistry, 2009, 48, 5042-5049.	1.2	68
82	Spectroelectrochemical Characterization of the Active Site of the [FeFe] Hydrogenase HydA1 from <i>Chlamydomonas reinhardtii</i> . Biochemistry, 2009, 48, 7780-7786.	1.2	133
83	Electrochemical Kinetic Investigations of the Reactions of [FeFe]-Hydrogenases with Carbon Monoxide and Oxygen: Comparing the Importance of Gas Tunnels and Active-Site Electronic/Redox Effects. Journal of the American Chemical Society, 2009, 131, 14979-14989.	6.6	167
84	How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17331-17336.	3.3	302
85	How algae produce hydrogen—news from the photosynthetic hydrogenase. Dalton Transactions, 2009, , 9960.	1.6	107
86	Optimized over-expression of [FeFe] hydrogenases with high specific activity in Clostridium acetobutylicum. International Journal of Hydrogen Energy, 2008, 33, 6076-6081.	3.8	77
87	A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtiistrains. BMC Plant Biology, 2008, 8, 107.	1.6	83
88	Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 410-416.	0.5	104
89	Biofuel from algae photobiological hydrogen production and CO _{2-fixation. International Journal of Energy Technology and Policy, 2007, 5, 290.}	0.1	4
90	Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta, 2007, 227, 397-407.	1.6	187

#	Article	IF	CITATIONS
91	The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. Biochemical Society Transactions, 2005, 33, 39-41.	1.6	73
92	Autotrophic and Mixotrophic Hydrogen Photoproduction in Sulfur-Deprived Chlamydomonas Cells. Applied and Environmental Microbiology, 2005, 71, 6199-6205.	1.4	170
93	Homologous and Heterologous Overexpression in Clostridium acetobutylicum and Characterization of Purified Clostridial and Algal Fe-Only Hydrogenases with High Specific Activities. Applied and Environmental Microbiology, 2005, 71, 2777-2781.	1.4	128
94	The Isolation of Green Algal Strains with Outstanding H2-Productivity. , 2004, , 103-115.		11
95	Cyanobacterial H2 production ? a comparative analysis. Planta, 2004, 218, 350-359.	1.6	185
96	Identification of a Cis-Acting Element Controlling Anaerobic Expression of the Hyda Gene from Chlamydomonas Reinhardtii. , 2004, , 117-127.		12
97	Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. FEBS Journal, 2003, 270, 2750-2758.	0.2	228
98	Hydrogenases in green algae: do they save the algae's life and solve our energy problems?. Trends in Plant Science, 2002, 7, 246-250.	4.3	164
99	Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 330-334.	2.4	88
100	Iron hydrogenases – ancient enzymes in modern eukaryotes. Trends in Biochemical Sciences, 2002, 27, 148-153.	3.7	135
101	Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green algaChlamydomonas reinhardtii. FEBS Journal, 2002, 269, 1022-1032.	0.2	219
102	6Fe9-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. International Journal of Hydrogen Energy, 2002, 27, 1431-1439.	3.8	130
103	Hydrogen Production. Green Algae as a Source of Energy. Plant Physiology, 2001, 127, 740-748.	2.3	564
104	A Novel Type of Iron Hydrogenase in the Green AlgaScenedesmus obliquus Is Linked to the Photosynthetic Electron Transport Chain. Journal of Biological Chemistry, 2001, 276, 6125-6132.	1.6	234
105	Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. FEBS Journal, 1994, 222, 769-774.	0.2	164
106	Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. FEBS Journal, 1993, 214, 475-481.	0.2	267
107	7 Hydrogen production by natural and semiartificial systems. , 0, , .		1

108 3 Catalytic properties and maturation of [FeFe]-hydrogenases. , 0, , .

1