List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7757904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11105-11109.	3.3	765
2	Surface acoustic wave microfluidics. Lab on A Chip, 2013, 13, 3626.	3.1	708
3	Linear Artificial Molecular Muscles. Journal of the American Chemical Society, 2005, 127, 9745-9759.	6.6	660
4	lsolation of exosomes from whole blood by integrating acoustics and microfluidics. Proceedings of the United States of America, 2017, 114, 10584-10589.	3.3	633
5	Acoustic separation of circulating tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4970-4975.	3.3	632
6	Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab on A Chip, 2009, 9, 2890.	3.1	612
7	Acoustic tweezers for the life sciences. Nature Methods, 2018, 15, 1021-1028.	9.0	513
8	Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on A Chip, 2009, 9, 3354.	3.1	449
9	Three-dimensional manipulation of single cells using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1522-1527.	3.3	448
10	Revisiting lab-on-a-chip technology for drug discovery. Nature Reviews Drug Discovery, 2012, 11, 620-632.	21.5	422
11	Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab on A Chip, 2008, 8, 221-223.	3.1	395
12	Cell separation using tilted-angle standing surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12992-12997.	3.3	390
13	Rotational manipulation of single cells and organisms using acoustic waves. Nature Communications, 2016, 7, 11085.	5.8	366
14	A millisecond micromixer via single-bubble-based acoustic streaming. Lab on A Chip, 2009, 9, 2738.	3.1	330
15	Controlling cell–cell interactions using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 43-48.	3.3	330
16	Acoustic Propulsion of Nanorod Motors Inside Living Cells. Angewandte Chemie - International Edition, 2014, 53, 3201-3204.	7.2	281
17	Gradient-index phononic crystals. Physical Review B, 2009, 79, .	1.1	274
18	Rare cell isolation and analysis in microfluidics. Lab on A Chip, 2014, 14, 626.	3.1	273

#	Article	IF	CITATIONS
19	Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Optics Express, 2011, 19, 15221.	1.7	268
20	Acoustofluidic separation of cells and particles. Microsystems and Nanoengineering, 2019, 5, 32.	3.4	268
21	A Mechanical Actuator Driven Electrochemically by Artificial Molecular Muscles. ACS Nano, 2009, 3, 291-300.	7.3	241
22	A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluidics and Nanofluidics, 2009, 7, 727-731.	1.0	232
23	An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Lab on A Chip, 2013, 13, 3847.	3.1	220
24	Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches. Nano Letters, 2009, 9, 819-825.	4.5	213
25	A nanomechanical device based on linear molecular motors. Applied Physics Letters, 2004, 85, 5391-5393.	1.5	210
26	Microfluidic diagnostics for the developing world. Lab on A Chip, 2012, 12, 1412.	3.1	201
27	Surface acoustic wave (SAW) acoustophoresis: now and beyond. Lab on A Chip, 2012, 12, 2766.	3.1	193
28	Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab on A Chip, 2012, 12, 4228.	3.1	186
29	Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab on A Chip, 2009, 9, 1583.	3.1	185
30	Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab on A Chip, 2012, 12, 2097.	3.1	185
31	Spatial colocalization and functional link of purinosomes with mitochondria. Science, 2016, 351, 733-737.	6.0	174
32	Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on A Chip, 2011, 11, 2319.	3.1	173
33	Acoustic Microfluidics. Annual Review of Analytical Chemistry, 2020, 13, 17-43.	2.8	173
34	"Microfluidic driftingâ€â€"implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab on A Chip, 2007, 7, 1260.	3.1	169
35	Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale, 2013, 5, 6243.	2.8	168
36	Selectively manipulable acoustic-powered microswimmers. Scientific Reports, 2015, 5, 9744.	1.6	168

#	Article	IF	CITATIONS
37	Hydrodynamically tunable optofluidic cylindrical microlens. Lab on A Chip, 2007, 7, 1303.	3.1	162
38	Probing circulating tumor cells in microfluidics. Lab on A Chip, 2013, 13, 602.	3.1	156
39	Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves. Lab on A Chip, 2015, 15, 2700-2709.	3.1	154
40	A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab on A Chip, 2014, 14, 4319-4323.	3.1	152
41	Lightâ€Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals. Advanced Materials, 2008, 20, 3528-3532.	11.1	150
42	An On-Chip, Multichannel Droplet Sorter Using Standing Surface Acoustic Waves. Analytical Chemistry, 2013, 85, 5468-5474.	3.2	149
43	Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today, 2016, 11, 778-792.	6.2	148
44	Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab on A Chip, 2016, 16, 2636-2643.	3.1	147
45	Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Science Advances, 2019, 5, eaau6062.	4.7	146
46	Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate. Applied Physics Letters, 2011, 98, .	1.5	142
47	Tunable Nanowire Patterning Using Standing Surface Acoustic Waves. ACS Nano, 2013, 7, 3306-3314.	7.3	142
48	Enriching Nanoparticles <i>via</i> Acoustofluidics. ACS Nano, 2017, 11, 603-612.	7.3	142
49	Theory and experiment on particle trapping and manipulation via optothermally generated bubbles. Lab on A Chip, 2014, 14, 384-391.	3.1	136
50	Rheotaxis of Bimetallic Micromotors Driven by Chemical–Acoustic Hybrid Power. ACS Nano, 2017, 11, 10591-10598.	7.3	135
51	Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals. Nature Communications, 2020, 11, 762.	5.8	135
52	Digital acoustofluidics enables contactless and programmable liquid handling. Nature Communications, 2018, 9, 2928.	5.8	134
53	Programmable Acoustic Metasurfaces. Advanced Functional Materials, 2019, 29, 1808489.	7.8	130
54	A reconfigurable plasmofluidic lens. Nature Communications, 2013, 4, 2305.	5.8	127

#	Article	IF	CITATIONS
55	Investigation of acoustic streaming patterns around oscillating sharp edges. Lab on A Chip, 2014, 14, 2824-2836.	3.1	126
56	A high-throughput acoustic cell sorter. Lab on A Chip, 2015, 15, 3870-3879.	3.1	126
57	Acoustic actuation of bioinspired microswimmers. Lab on A Chip, 2017, 17, 395-400.	3.1	124
58	Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays. Journal of Applied Physics, 2008, 103, .	1.1	122
59	Tunable patterning of microparticles and cells using standing surface acoustic waves. Lab on A Chip, 2012, 12, 2491.	3.1	122
60	An Acoustofluidic Micromixer via Bubble Inception and Cavitation from Microchannel Sidewalls. Analytical Chemistry, 2014, 86, 5083-5088.	3.2	122
61	Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom. Lab on A Chip, 2009, 9, 2050.	3.1	118
62	Accelerating drug discovery via organs-on-chips. Lab on A Chip, 2013, 13, 4697.	3.1	117
63	Circulating Tumor Cell Phenotyping via Highâ€Throughput Acoustic Separation. Small, 2018, 14, e1801131.	5.2	115
64	Molecular plasmonics for biology and nanomedicine. Nanomedicine, 2012, 7, 751-770.	1.7	114
65	Mechanical Shuttling of Linear Motor-Molecules in Condensed Phases on Solid Substrates. Nano Letters, 2004, 4, 2065-2071.	4.5	111
66	Incident-Angle-Modulated Molecular Plasmonic Switches: A Case of Weak Exciton–Plasmon Coupling. Nano Letters, 2011, 11, 2061-2065.	4.5	107
67	Steering Acoustically Propelled Nanowire Motors toward Cells in a Biologically Compatible Environment Using Magnetic Fields. Langmuir, 2013, 29, 16113-16118.	1.6	107
68	Standing surface acoustic wave (SSAW)-based microfluidic cytometer. Lab on A Chip, 2014, 14, 916-923.	3.1	106
69	<i>In Situ</i> Fabrication of 3D Ag@ZnO Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Systems. ACS Nano, 2014, 8, 12175-12184.	7.3	106
70	High-throughput acoustic separation of platelets from whole blood. Lab on A Chip, 2016, 16, 3466-3472.	3.1	106
71	Acoustic Separation of Nanoparticles in Continuous Flow. Advanced Functional Materials, 2017, 27, 1606039.	7.8	106
72	Acoustofluidic Salivary Exosome Isolation. Journal of Molecular Diagnostics, 2020, 22, 50-59.	1.2	104

#	Article	IF	CITATIONS
73	An integrated, multiparametric flow cytometry chip using "microfluidic drifting―based three-dimensional hydrodynamic focusing. Biomicrofluidics, 2012, 6, 24113-241139.	1.2	102
74	Acoustofluidic centrifuge for nanoparticle enrichment and separation. Science Advances, 2021, 7, .	4.7	100
75	Annular aperture array based color filter. Applied Physics Letters, 2011, 99, .	1.5	99
76	Surface Acoustic Wave Driven Light Shutters Using Polymerâ€Đispersed Liquid Crystals. Advanced Materials, 2011, 23, 1656-1659.	11.1	97
77	Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates. Journal of Physical Chemistry C, 2012, 116, 7249-7254.	1.5	97
78	Investigation of micromixing by acoustically oscillated sharp-edges. Biomicrofluidics, 2016, 10, 024124.	1.2	96
79	Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings: fabrication and application in biosensing. Journal of Materials Chemistry, 2007, 17, 4896.	6.7	95
80	Acoustofluidic Rotational Manipulation of Cells and Organisms Using Oscillating Solid Structures. Small, 2016, 12, 5120-5125.	5.2	95
81	Acoustofluidics for biomedical applications. Nature Reviews Methods Primers, 2022, 2, .	11.8	95
82	Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. Lab on A Chip, 2013, 13, 328-331.	3.1	91
83	Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW). Lab on A Chip, 2014, 14, 924-930.	3.1	88
84	Tunable phononic crystals with anisotropic inclusions. Physical Review B, 2011, 83, .	1.1	86
85	Standing surface acoustic wave (SSAW)-based cell washing. Lab on A Chip, 2015, 15, 331-338.	3.1	85
86	Purinosome formation as a function of the cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1368-1373.	3.3	84
87	Onâ€Chip Production of Sizeâ€Controllable Liquid Metal Microdroplets Using Acoustic Waves. Small, 2016, 12, 3861-3869.	5.2	84
88	Applications of Acoustofluidics in Bioanalytical Chemistry. Analytical Chemistry, 2019, 91, 757-767.	3.2	84
89	Standing Surface Acoustic Wave (SSAW)â€Based Fluorescenceâ€Activated Cell Sorter. Small, 2018, 14, e1801996.	5.2	83
90	Separating extracellular vesicles and lipoproteins <i>via</i> acoustofluidics. Lab on A Chip, 2019, 19, 1174-1182.	3.1	81

#	Article	IF	CITATIONS
91	Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals. Optics Letters, 2009, 34, 2351.	1.7	80
92	Dynamic Tuning of Plasmon–Exciton Coupling in Arrays of Nanodisk–Jâ€aggregate Complexes. Advanced Materials, 2010, 22, 3603-3607.	11.1	80
93	Effects of Geometry and Composition on Charge-Induced Plasmonic Shifts in Gold Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 7309-7317.	1.5	79
94	Changing Stations in Single Bistable Rotaxane Molecules under Electrochemical Control. ACS Nano, 2010, 4, 3697-3701.	7.3	78
95	A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. Applied Physics Letters, 2010, 97, .	1.5	78
96	Standing Surface Acoustic Wave Based Cell Coculture. Analytical Chemistry, 2014, 86, 9853-9859.	3.2	78
97	Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers. Advanced Materials, 2016, 28, 8632-8638.	11.1	78
98	Functional Liquid Metal Nanoparticles Produced by Liquidâ€Based Nebulization. Advanced Materials Technologies, 2019, 4, 1800420.	3.0	78
99	Acoustofluidic bacteria separation. Journal of Micromechanics and Microengineering, 2017, 27, 015031.	1.5	77
100	Acoustofluidic Fluorescence Activated Cell Sorter. Analytical Chemistry, 2015, 87, 12051-12058.	3.2	76
101	A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Lab on A Chip, 2020, 20, 1298-1308.	3.1	76
102	Wide-band acoustic collimating by phononic crystal composites. Applied Physics Letters, 2008, 92, .	1.5	74
103	Molecular, Supramolecular, and Macromolecular Motors and Artificial Muscles. MRS Bulletin, 2009, 34, 671-681.	1.7	74
104	Milliseconds microfluidic chaotic bubble mixer. Microfluidics and Nanofluidics, 2010, 8, 139-144.	1.0	74
105	A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection. Lab on A Chip, 2011, 11, 1795.	3.1	74
106	Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering. Nanotechnology, 2013, 24, 245704.	1.3	74
107	Experimental and numerical studies on standing surface acoustic wave microfluidics. Lab on A Chip, 2016, 16, 515-524.	3.1	73
108	Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10976-10982.	3.3	72

#	Article	IF	CITATIONS
109	Single-Cell Virology: On-Chip Investigation of Viral Infection Dynamics. Cell Reports, 2017, 21, 1692-1704.	2.9	71
110	Optofluidic imaging: now and beyond. Lab on A Chip, 2013, 13, 17-24.	3.1	70
111	A nanowell-based QCM aptasensor for rapid and sensitive detection of avian influenza virus. Sensors and Actuators B: Chemical, 2017, 240, 934-940.	4.0	70
112	Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array. Applied Physics Letters, 2012, 100, 053119.	1.5	69
113	Surface acoustic waves enable rotational manipulation of <i>Caenorhabditis elegans</i> . Lab on A Chip, 2019, 19, 984-992.	3.1	69
114	Acoustofluidicsâ€Assisted Fluorescence‧ERS Bimodal Biosensors. Small, 2020, 16, e2005179.	5.2	68
115	Largeâ€5cale Fabrication of Threeâ€Dimensional Surface Patterns Using Templateâ€Defined Electrochemical Deposition. Advanced Functional Materials, 2013, 23, 720-730.	7.8	67
116	Humidity sensing based on nanoporous polymeric photonic crystals. Sensors and Actuators B: Chemical, 2008, 129, 391-396.	4.0	66
117	Harmonic acoustics for dynamic and selective particle manipulation. Nature Materials, 2022, 21, 540-546.	13.3	66
118	Fabrication and Characterization of Beaded SiC Quantum Rings with Anomalous Red Spectral Shift. Advanced Materials, 2012, 24, 5598-5603.	11.1	65
119	Probing cell–cell communication with microfluidic devices. Lab on A Chip, 2013, 13, 3152.	3.1	65
120	An electrochemical detection scheme for identification of single nucleotide polymorphisms using hairpin-forming probes. Nucleic Acids Research, 2002, 30, 55e-55.	6.5	63
121	Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays. Journal of Physical Chemistry C, 2009, 113, 7019-7024.	1.5	63
122	Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. Lab on A Chip, 2013, 13, 1772.	3.1	63
123	Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. Journal of Virological Methods, 2016, 236, 147-156.	1.0	63
124	Acoustofluidic Holography for Micro- to Nanoscale Particle Manipulation. ACS Nano, 2020, 14, 14635-14645.	7.3	62
125	Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale. Small, 2015, 11, 4423-4444.	5.2	61
126	Colour compound lenses for a portable fluorescence microscope. Light: Science and Applications, 2019, 8, 75.	7.7	61

8

#	Article	IF	CITATIONS
127	Reusable acoustic tweezers for disposable devices. Lab on A Chip, 2015, 15, 4517-4523.	3.1	60
128	Probing Cell Deformability via Acoustically Actuated Bubbles. Small, 2016, 12, 902-910.	5.2	60
129	Mixing high-viscosity fluids via acoustically driven bubbles. Journal of Micromechanics and Microengineering, 2017, 27, 015008.	1.5	60
130	Microfluidic Isolation and Enrichment of Nanoparticles. ACS Nano, 2020, 14, 16220-16240.	7.3	59
131	Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. Science Advances, 2020, 6, .	4.7	59
132	Beam bending via plasmonic lenses. Optics Express, 2010, 18, 23458.	1.7	58
133	Exploiting mechanical biomarkers in microfluidics. Lab on A Chip, 2012, 12, 4006.	3.1	57
134	An acoustofluidic device for efficient mixing over a wide range of flow rates. Lab on A Chip, 2020, 20, 1238-1248.	3.1	56
135	Acoustofluidics-Assisted Engineering of Multifunctional Three-Dimensional Zinc Oxide Nanoarrays. ACS Nano, 2020, 14, 6150-6163.	7.3	56
136	A Droplet-Based, Optofluidic Device for High-Throughput, Quantitative Bioanalysis. Analytical Chemistry, 2012, 84, 10745-10749.	3.2	55
137	High-throughput cell focusing and separation <i>via</i> acoustofluidic tweezers. Lab on A Chip, 2018, 18, 3003-3010.	3.1	55
138	Tunable optofluidic microlens through active pressure control of an air–liquid interface. Microfluidics and Nanofluidics, 2010, 9, 313-318.	1.0	54
139	Thermal behavior of localized surface plasmon resonance of Auâ^•TiO2 core/shell nanoparticle arrays. Applied Physics Letters, 2007, 90, 183117.	1.5	52
140	All-Optical Modulation of Localized Surface Plasmon Coupling in a Hybrid System Composed of Photoswitchable Gratings and Au Nanodisk Arrays. Journal of Physical Chemistry C, 2011, 115, 7717-7722.	1.5	52
141	Single-Shot Characterization of Enzymatic Reaction Constants <i>K</i> _m and <i>k</i> _{cat} by an Acoustic-Driven, Bubble-Based Fast Micromixer. Analytical Chemistry, 2012, 84, 7495-7501.	3.2	52
142	Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via "microfluidic drifting― Lab on A Chip, 2014, 14, 415-423.	3.1	52
143	Coupling between Molecular and Plasmonic Resonances: Effect of Molecular Absorbance. Journal of Physical Chemistry C, 2009, 113, 18499-18503.	1.5	51
144	An acoustofluidic sputum liquefier. Lab on A Chip, 2015, 15, 3125-3131.	3.1	51

#	Article	IF	CITATIONS
145	Acoustofluidic actuation of in situ fabricated microrotors. Lab on A Chip, 2016, 16, 3532-3537.	3.1	51
146	Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing. Nature Communications, 2021, 12, 6458.	5.8	51
147	Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves. Small, 2015, 11, 2733-2737.	5.2	49
148	A spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures. Lab on A Chip, 2015, 15, 4166-4176.	3.1	49
149	Acoustofluidic Synthesis of Particulate Nanomaterials. Advanced Science, 2019, 6, 1900913.	5.6	49
150	Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nature Communications, 2021, 12, 1118.	5.8	49
151	Lasing from colloidal InP/ZnS quantum dots. Optics Express, 2011, 19, 5528.	1.7	48
152	Tuning surface-enhanced Raman scattering from graphene substrates using the electric field effect and chemical doping. Applied Physics Letters, 2013, 102, 11102.	1.5	48
153	Acoustofluidic Chemical Waveform Generator and Switch. Analytical Chemistry, 2014, 86, 11803-11810.	3.2	48
154	Three-Dimensional Hydrodynamic Focusing Method for Polyplex Synthesis. ACS Nano, 2014, 8, 332-339.	7.3	48
155	A sharp-edge-based acoustofluidic chemical signal generator. Lab on A Chip, 2018, 18, 1411-1421.	3.1	48
156	Acoustic mirage in two-dimensional gradient-index phononic crystals. Journal of Applied Physics, 2009, 106, 053529.	1.1	47
157	Cell lysis <i>via</i> acoustically oscillating sharp edges. Lab on A Chip, 2019, 19, 4021-4032.	3.1	47
158	Light-driven artificial molecular machines. Journal of Nanophotonics, 2010, 4, 042501.	0.4	46
159	Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold. Journal of Physical Chemistry C, 2010, 114, 18059-18066.	1.5	46
160	Shape-Controlled Synthesis of Hybrid Nanomaterials <i>via</i> Three-Dimensional Hydrodynamic Focusing. ACS Nano, 2014, 8, 10026-10034.	7.3	46
161	An in-plane, variable optical attenuator using a fluid-based tunable reflective interface. Applied Physics Letters, 2009, 95, .	1.5	45
162	High-speed optical humidity sensors based on chiral sculptured thin films. Sensors and Actuators B: Chemical, 2011, 156, 593-598.	4.0	45

#	Article	IF	CITATIONS
163	Acoustofluidic methods in cell analysis. TrAC - Trends in Analytical Chemistry, 2019, 117, 280-290.	5.8	45
164	A multifunctional hydrogel coating to direct fibroblast activation and infected wound healing via simultaneously controllable photobiomodulation and photodynamic therapies. Biomaterials, 2021, 278, 121164.	5.7	45
165	Electrochemically created highly surface roughened Ag nanoplate arrays for SERS biosensing applications. Journal of Materials Chemistry C, 2014, 2, 8350-8356.	2.7	43
166	Lab-on-a-chip technologies for single-molecule studies. Lab on A Chip, 2013, 13, 2183.	3.1	42
167	Acoustic streaming vortices enable contactless, digital control of droplets. Science Advances, 2020, 6, eaba0606.	4.7	42
168	Superhydrophobic surface enhanced Raman scattering sensing using Janus particle arrays realized by site-specific electrochemical growth. Journal of Materials Chemistry C, 2014, 2, 542-547.	2.7	41
169	Towards nanoporous polymer thin film-based drug delivery systems. Thin Solid Films, 2009, 517, 1794-1798.	0.8	40
170	Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index. Optics Express, 2009, 17, 2997.	1.7	40
171	Acoustic beamwidth compressor using gradient-index phononic crystals. Journal Physics D: Applied Physics, 2009, 42, 185502.	1.3	39
172	Electrically switchable phase-type fractal zone plates and fractal photon sieves. Optics Express, 2009, 17, 12418.	1.7	39
173	Design of acoustic beam aperture modifier using gradient-index phononic crystals. Journal of Applied Physics, 2012, 111, 123510.	1.1	39
174	Acoustically Driven Fluid and Particle Motion in Confined and Leaky Systems. Physical Review Applied, 2018, 9, .	1.5	38
175	On-chip stool liquefaction <i>via</i> acoustofluidics. Lab on A Chip, 2019, 19, 941-947.	3.1	38
176	Electrochemical micro-aptasensors for exosome detection based on hybridization chain reaction amplification. Microsystems and Nanoengineering, 2021, 7, 63.	3.4	38
177	Self-Powered Glucose-Responsive Micropumps. ACS Nano, 2014, 8, 8537-8542.	7.3	37
178	Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing. Lab on A Chip, 2010, 10, 2387.	3.1	36
179	Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics. Lab on A Chip, 2018, 18, 3645-3654.	3.1	36
180	A Cell-Phone-Based Acoustofluidic Platform for Quantitative Point-of-Care Testing. ACS Nano, 2020, 14, 3159-3169.	7.3	36

#	Article	IF	CITATIONS
181	A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles. Applied Physics Letters, 2012, 101, 141101.	1.5	35
182	Fetal nucleated red blood cell analysis for non-invasive prenatal diagnostics using a nanostructure microchip. Journal of Materials Chemistry B, 2017, 5, 226-235.	2.9	34
183	Plastic-based acoustofluidic devices for high-throughput, biocompatible platelet separation. Lab on A Chip, 2019, 19, 394-402.	3.1	34
184	Acoustohydrodynamic tweezers via spatial arrangement of streaming vortices. Science Advances, 2021, 7, .	4.7	34
185	Molecular machines drive smart drug delivery. Nanomedicine, 2010, 5, 1309-1312.	1.7	33
186	Acoustic actuation of <i>in situ</i> fabricated artificial cilia. Journal of Micromechanics and Microengineering, 2018, 28, 025012.	1.5	33
187	Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells. Lab on A Chip, 2020, 20, 3399-3409.	3.1	33
188	Calcium Peroxide Nanoparticlesâ€Embedded Coatings on Antiâ€Inflammatory TiO ₂ Nanotubes for Bacteria Elimination and Inflammatory Environment Amelioration. Small, 2021, 17, e2102907.	5.2	33
189	Acoustofluidic devices controlled by cell phones. Lab on A Chip, 2018, 18, 433-441.	3.1	32
190	Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects. Lab on A Chip, 2020, 20, 987-994.	3.1	32
191	Biological and biomimetic molecular machines. Nanomedicine, 2008, 3, 107-124.	1.7	31
192	Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device. Scientific Reports, 2015, 5, 12572.	1.6	31
193	Acoustic Cell Separation Based on Density and Mechanical Properties. Journal of Biomechanical Engineering, 2020, 142, .	0.6	31
194	Acoustofluidic multimodal diagnostic system for Alzheimer's disease. Biosensors and Bioelectronics, 2022, 196, 113730.	5.3	31
195	Contactless, programmable acoustofluidic manipulation of objects on water. Lab on A Chip, 2019, 19, 3397-3404.	3.1	30
196	Scalable Manufacturing of Plasmonic Nanodisk Dimers and Cusp Nanostructures Using Salting-out Quenching Method and Colloidal Lithography. ACS Nano, 2011, 5, 5838-5847.	7.3	28
197	Theory and experiment on resonant frequencies of liquid-air interfaces trapped in microfluidic devices. Journal of Applied Physics, 2013, 114, 194503.	1.1	28
198	Dark-Field Illumination on Zero-Mode Waveguide/Microfluidic Hybrid Chip Reveals T4 Replisomal Protein Interactions. Nano Letters, 2014, 14, 1952-1960.	4.5	28

#	Article	IF	CITATIONS
199	Acoustofluidic Transfer of Inflammatory Cells from Human Sputum Samples. Analytical Chemistry, 2016, 88, 5655-5661.	3.2	28
200	Electrocarving during Electrodeposition Growth. Advanced Materials, 2018, 30, e1805686.	11.1	28
201	Open source acoustofluidics. Lab on A Chip, 2019, 19, 2404-2414.	3.1	28
202	Sonoporation: Past, Present, and Future. Advanced Materials Technologies, 2022, 7, .	3.0	28
203	Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure. Biomicrofluidics, 2010, 4, 043007.	1.2	27
204	Acoustofluidic coating of particles and cells. Lab on A Chip, 2016, 16, 4366-4372.	3.1	27
205	Acoustic streaming: an arbitrary Lagrangian–Eulerian perspective. Journal of Fluid Mechanics, 2017, 825, 600-630.	1.4	27
206	Fluorescence-based sorting of <i>Caenorhabditis elegans via</i> acoustofluidics. Lab on A Chip, 2020, 20, 1729-1739.	3.1	27
207	Fabrication of tunable, high-molecular-weight polymeric nanoparticles <i>via</i> ultrafast acoustofluidic micromixing. Lab on A Chip, 2021, 21, 2453-2463.	3.1	27
208	Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation. Microsystems and Nanoengineering, 2022, 8, 45.	3.4	27
209	Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals. Journal of Applied Physics, 2011, 109, 084340.	1.1	26
210	Hybrid Dielectric-loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale. Scientific Reports, 2017, 7, 40479.	1.6	26
211	Clinical utility of non-EpCAM based circulating tumor cell assays. Advanced Drug Delivery Reviews, 2018, 125, 132-142.	6.6	26
212	High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals. Optics Express, 2011, 19, 15265.	1.7	25
213	A polystyrene-based microfluidic device with three-dimensional interconnected microporous walls for perfusion cell culture. Biomicrofluidics, 2014, 8, 046505.	1.2	25
214	Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	25
215	A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nature Communications, 2022, 13, .	5.8	25
216	Label-Free Measurements of Reaction Kinetics Using a Droplet-Based Optofluidic Device. Journal of the Association for Laboratory Automation, 2015, 20, 17-24.	2.8	24

#	Article	IF	CITATIONS
217	Acidic Submucosal Gland pH and Elevated Protein Concentration Produce Abnormal Cystic Fibrosis Mucus. Developmental Cell, 2020, 54, 488-500.e5.	3.1	24
218	Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process. Applied Physics Letters, 2010, 97, .	1.5	23
219	Acoustofluidic Relay: Sequential Trapping and Transporting of Microparticles via Acoustically Excited Oscillating Bubbles. Journal of the Association for Laboratory Automation, 2014, 19, 137-143.	2.8	23
220	Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes. Microsystems and Nanoengineering, 2021, 7, 20.	3.4	22
221	Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials. Nature Communications, 2021, 12, 3844.	5.8	22
222	Nanoporous polymeric transmission gratings for high-speed humidity sensing. Nanotechnology, 2007, 18, 465501.	1.3	21
223	Low-frequency flexural wave based microparticle manipulation. Lab on A Chip, 2020, 20, 1281-1289.	3.1	21
224	Recent Developments in Artificial Molecular-Machine–Based Active Nanomaterials and Nanosystems. MRS Bulletin, 2008, 33, 226-231.	1.7	20
225	Beam aperture modifier and beam deflector using gradient-index photonic crystals. Journal of Applied Physics, 2010, 108, 103505.	1.1	20
226	Shifts in plasmon resonance due to charging of a nanodisk array in argon plasma. Applied Physics Letters, 2012, 100, 101903-1019033.	1.5	19
227	Acoustic tweezer with complex boundary-free trapping and transport channel controlled by shadow waveguides. Science Advances, 2021, 7, .	4.7	18
228	Metallic Membranes with Subwavelength Complementary Patterns: Distinct Substrates for Surface-Enhanced Raman Scattering. ACS Nano, 2011, 5, 5472-5477.	7.3	17
229	Acoustofluidic Droplet Sorter Based on Single Phase Focused Transducers. Small, 2021, 17, e2103848.	5.2	17
230	Acoustofluidic black holes for multifunctional in-droplet particle manipulation. Science Advances, 2022, 8, eabm2592.	4.7	17
231	On-chip flow cytometry: where is it now and where is it going?. Biomarkers in Medicine, 2013, 7, 75-78.	0.6	16
232	Acoustofluidic Scanning Nanoscope with High Resolution and Large Field of View. ACS Nano, 2020, 14, 8624-8633.	7.3	16
233	Nanoscale super-resolution imaging via a metal–dielectric metamaterial lens system. Journal Physics D: Applied Physics, 2011, 44, 415101.	1.3	15
234	Microfluidic opportunities in the field of nutrition. Lab on A Chip, 2013, 13, 3993.	3.1	14

#	Article	IF	CITATIONS
235	Unconventional microfluidics: expanding the discipline. Lab on A Chip, 2013, 13, 1457.	3.1	14
236	Combining the Masking and Scaffolding Modalities of Colloidal Crystal Templates: Plasmonic Nanoparticle Arrays with Multiple Periodicities. Chemistry of Materials, 2014, 26, 6432-6438.	3.2	14
237	Immunological Analyses of Whole Blood via "Microfluidic Drifting―Based Flow Cytometric Chip. Annals of Biomedical Engineering, 2014, 42, 2303-2313.	1.3	14
238	Acoustofluidics: Acoustofluidic Rotational Manipulation of Cells and Organisms Using Oscillating Solid Structures (Small 37/2016). Small, 2016, 12, 5230-5230.	5.2	14
239	Simple fabrication of snowman-like colloids. Journal of Colloid and Interface Science, 2012, 371, 28-33.	5.0	12
240	Enzymatically-degradable hydrogel coatings on titanium for bacterial infection inhibition and enhanced soft tissue compatibility via a self-adaptive strategy. Bioactive Materials, 2021, 6, 4670-4685.	8.6	12
241	Deterministic droplet coding <i>via</i> acoustofluidics. Lab on A Chip, 2020, 20, 4466-4473.	3.1	11
242	Holographically Formed, Acoustically Switchable Gratings Based on Polymer-Dispersed Liquid Crystals. Journal of the Association for Laboratory Automation, 2013, 18, 291-295.	2.8	10
243	Point-of-Care Technologies for the Advancement of Precision Medicine in Heart, Lung, Blood, and Sleep Disorders. IEEE Journal of Translational Engineering in Health and Medicine, 2016, 4, 1-10.	2.2	10
244	Separation: Acoustic Separation of Nanoparticles in Continuous Flow (Adv. Funct. Mater. 14/2017). Advanced Functional Materials, 2017, 27, .	7.8	10
245	Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems. AIP Advances, 2015, 5, 097161.	0.6	9
246	Ordered Au Nanodisk and Nanohole Arrays: Fabrication and Applications. Journal of Nanotechnology in Engineering and Medicine, 2010, 1, .	0.8	8
247	Electrodeposition: Electrocarving during Electrodeposition Growth (Adv. Mater. 51/2018). Advanced Materials, 2018, 30, 1870395.	11.1	8
248	In situ infrared spectroscopic studies of molecular behavior in nanoelectronic devices. , 0, , .		6
249	Photonic crystal composites-based wide-band optical collimator. Journal of Applied Physics, 2010, 108,	1.1	6
250	Microfluidic approaches for cell-based molecular diagnosis. Biomicrofluidics, 2018, 12, 051501.	1.2	6
251	Hardware Design and Fault-Tolerant Synthesis for Digital Acoustofluidic Biochips. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 1065-1078.	2.7	6
252	Comment on "Ghost cytometry― Science, 2019, 364, .	6.0	6

#	Article	IF	CITATIONS
253	Intelligent nanoscope for rapid nanomaterial identification and classification. Lab on A Chip, 0, , .	3.1	6
254	Single-step holographic fabrication of large-area periodically corrugated metal films. Journal of Applied Physics, 2012, 112, 113101.	1.1	5
255	Electrically Tunable Surface Acoustic Wave Propagation at MHz Frequencies Based on Carbon Nanotube Thinâ€Film Transistors. Advanced Functional Materials, 2021, 31, 2010744.	7.8	5
256	Fundamentals and applications of acoustics in microfluidics. , 2022, , 297-321.		5
257	Ring-shaped photoacoustic tweezers for single particle manipulation. Optics Letters, 2022, 47, 826.	1.7	5
258	The self-assembly of monodisperse nanospheres within microtubes. Nanotechnology, 2007, 18, 275706.	1.3	4
259	Design of acoustic beam aperture modifier using gradient-index phononic crystals. , 2010, , .		3
260	Mechanically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays. Journal of Nanotechnology in Engineering and Medicine, 2012, 3, .	0.8	3
261	Mixing high-viscosity fluids via acoustically driven bubbles. Journal of Micromechanics and Microengineering, 2017, 27, .	1.5	3
262	Biocompatible, adhesive and stable GelMAc/PVAMA/MPDA@Cur hydrogels regulate immune response to improve endoscopic submucosal dissection-induced gastric ulcer healing in vivo. Applied Materials Today, 2022, 28, 101539.	2.3	3
263	Numerical simulation of turbulent flow and heat transfer in multiâ€channel, narrowâ€gap fuel element. Engineering Computations, 2002, 19, 327-345.	0.7	2
264	Focusing fluids and light. IEEE Nanotechnology Magazine, 2008, 2, 22-27.	0.9	2
265	Milliseconds Microfluidic Bubble Mixer Using Chaotic Advection. , 2008, , .		2
266	The Lab-on-a-Chip Approach for Molecular Diagnostics. , 2010, , 21-34.		2
267	Fluorescence-Activated Cell Sorters: Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter (Small 40/2018). Small, 2018, 14, 1870185.	5.2	2
268	Hardware Design and Experimental Demonstrations for Digital Acoustofluidic Biochips. , 2019, , .		2
269	Acoustic Tweezers for Single-Cell Manipulation. , 2020, , 1-27.		2
270	A Tunable Optofluidic Microlens Based on Gradient Refractive Index. , 2009, , .		2

#	Article	IF	CITATIONS
271	Reconfigurable Plasmofluidic Lenses. , 2014, , .		2
272	An acoustofluidic scanning nanoscope using enhanced image stacking and processing. Microsystems and Nanoengineering, 2022, 8, .	3.4	2
273	Biologically inspired energy: harnessing molecular functionality towards nanosystemic design. Nanomedicine, 2006, 1, 369-372.	1.7	1
274	Towards artificial molecular motor-based electroactive/photoactive biomimetic muscles. , 2007, , .		1
275	Surface acoustic wave (SAW) induced patterning of micro beads in microfluidic channels. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	1
276	In-plane tunable optofluidic microlenses. , 2008, , .		1
277	Active plasmonic devices based on ordered Au nanodisk arrays. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	1
278	Lab-on-a-chip Technologies Enabled by Surface Acoustic Waves. , 2014, , 354-398.		1
279	Chapter 5. Manipulation of Micro-/Nano-Objects via Surface Acoustic Waves. RSC Detection Science, 2014, , 136-152.	0.0	1
280	Crystallography: Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves (Small 23/2015). Small, 2015, 11, 2710-2710.	5.2	1
281	Plasmofluidics: Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale (Small 35/2015). Small, 2015, 11, 4422-4422.	5.2	1
282	Structural Test and Functional Test for Digital Acoustofluidic Biochips. , 2019, , .		1
283	Addressing the global challenges of COVID-19 and other pulmonary diseases with microfluidic technology. Engineering, 2022, , .	3.2	1
284	Nanoporous polymeric structures: Fabrication and applications in biosensing and drug delivery. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	0
285	Molecular Machine-Based NEMS. , 2008, , 635-656.		0
286	All-Optical Active Plasmonics Based on Ordered Au Nanodisk Array Embedded in Photoresponsive Liquid Crystals. Materials Research Society Symposia Proceedings, 2008, 1077, 10401.	0.1	0
287	A nanoplasmonic switch based on molecular machines. , 2009, , .		0
288	Molecular Muscle based Nano-Electro-Mechanical-Systems (NEMS). , 2009, , .		0

#	Article	IF	CITATIONS
289	A Plasmonic Switch Based on Molecular Machine-Au Nanodisk Complexes. , 2009, , .		0
290	Dynamic Control of Plasmon-Exciton Coupling in Au Nanodisk–J-Aggregate Hybrid Nanostructure Arrays. Materials Research Society Symposia Proceedings, 2009, 1208, 1.	0.1	0
291	Surface Acoustic Wave-Driven Active Plasmonicsbased on Dynamic Patterning of Nanoparticles in Microfluidic Channels. , 2009, , .		Ο
292	Molecular active plasmonics: controlling plasmon resonances with molecular machines. Proceedings of SPIE, 2009, , .	0.8	0
293	Holographically Fabricated Dye-Doped Nanoporous Polymers as Matrix for Laser Desorption/Ionization Mass Spectrometry. Journal of Nanotechnology in Engineering and Medicine, 2010, 1, .	0.8	0
294	Ordered Au Nanodisk and Nanohole Arrays: Fabrications and Applications. , 2010, , .		0
295	A fully integrated, high-throughput, multi-parametric flow cytometry chip using "microfluidic drifting" based three-dimensional (3D) hydrodynamic focusing. , 2011, , .		0
296	Photonic crystal based beam aperture modifier and deflector. , 2011, , .		0
297	Acoustic tweezers: Achieving quasi-dynamic micropartcile patterning using tunable surface acoustic waves. , 2011, , .		0
298	Linear optical and surface-enhanced Raman scattering study on metallic membranes with subwavelength complementary patterns. , 2011, , .		0
299	Polymer-dispersed liquid crystals light shutter driven by surface acoustic wave. , 2011, , .		0
300	Acoustic tweezers: Manipulating particles, cells, and organisms using standing surface acoustic waves (SSAW). , 2013, , .		0
301	Sink or swim: using density as a signal for quantitative immunoassays. Lab on A Chip, 2015, 15, 958-958.	3.1	0
302	Hydrogels: Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers (Adv. Mater. 39/2016). Advanced Materials, 2016, 28, 8556-8556.	11.1	0
303	Angle and Polarization Dependent Tuning of Plasmonic Spectra in Nanoparticle Arrays: Towards Active Plasmonics. , 2010, , .		0
304	Nanoporous Polymeric Grating-Based Biosensors. , 2010, , .		0
305	Acoustic Tweezers for Single-Cell Manipulation. , 2020, , 1-27.		0
306	Acoustic Tweezers for Single-Cell Manipulation. , 2022, , 1051-1077.		0