
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7757893/publications.pdf Version: 2024-02-01

SHILFI HAO

#	Article	IF	CITATIONS
1	Feather keratin hydrogel for wound repair: Preparation, healing effect and biocompatibility evaluation. Colloids and Surfaces B: Biointerfaces, 2017, 149, 341-350.	2.5	140
2	Preparation, characterization and in vitro release of chitosan nanoparticles loaded with gentamicin and salicylic acid. Carbohydrate Polymers, 2011, 85, 803-808.	5.1	104
3	An engineered ScCas9 with broad PAM range and high specificity and activity. Nature Biotechnology, 2020, 38, 1154-1158.	9.4	93
4	Recombinant Human Hair Keratin Nanoparticles Accelerate Dermal Wound Healing. ACS Applied Materials & Interfaces, 2019, 11, 18681-18690.	4.0	82
5	Preparation of Eudragit L 100-55 enteric nanoparticles by a novel emulsion diffusion method. Colloids and Surfaces B: Biointerfaces, 2013, 108, 127-133.	2.5	68
6	Rapid preparation of pH-sensitive polymeric nanoparticle with high loading capacity using electrospray for oral drug delivery. Materials Science and Engineering C, 2013, 33, 4562-4567.	3.8	59
7	Development of feather keratin nanoparticles and investigation of their hemostatic efficacy. Materials Science and Engineering C, 2016, 68, 768-773.	3.8	59
8	Development and assessment of kerateine nanoparticles for use as a hemostatic agent. Materials Science and Engineering C, 2016, 63, 352-358.	3.8	58
9	Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. Journal of Nanobiotechnology, 2018, 16, 24.	4.2	57
10	Human hair keratin for physically transient resistive switching memory devices. Journal of Materials Chemistry C, 2019, 7, 3315-3321.	2.7	55
11	Synthesis and fabrication of a keratin-conjugated insulin hydrogel for the enhancement of wound healing. Colloids and Surfaces B: Biointerfaces, 2019, 175, 436-444.	2.5	54
12	Adenosine-A2A Receptor Pathway in Cancer Immunotherapy. Frontiers in Immunology, 2022, 13, 837230.	2.2	51
13	Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport. Materials Science and Engineering C, 2017, 76, 1316-1327.	3.8	43
14	Keratose/poly (vinyl alcohol) blended nanofibers: Fabrication and biocompatibility assessment. Materials Science and Engineering C, 2017, 72, 212-219.	3.8	38
15	Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release. Materials Science and Engineering C, 2014, 39, 113-119.	3.8	33
16	Keratin nanoparticles-coating electrospun PVA nanofibers for potential neural tissue applications. Journal of Materials Science: Materials in Medicine, 2019, 30, 9.	1.7	32
17	A novel gastroretentive porous microparticle for anti-Helicobacter pylori therapy: Preparation, in vitro and in vivo evaluation. International Journal of Pharmaceutics, 2014, 463, 10-21.	2.6	31
18	Thermo-sensitive keratin hydrogel against iron-induced brain injury after experimental intracerebral hemorrhage. International Journal of Pharmaceutics, 2019, 566, 342-351.	2.6	30

#	Article	IF	CITATIONS
19	Preparation and evaluation of O-carboxymethyl chitosan/cyclodextrin nanoparticles as hydrophobic drug delivery carriers. Polymer Bulletin, 2011, 67, 1201-1213.	1.7	29
20	Nanoparticle encapsulated core-shell hydrogel for on-site BMSCs delivery protects from iron overload and enhances functional recovery. Journal of Controlled Release, 2020, 320, 381-391.	4.8	28
21	A novel improved therapy strategy for diabetic nephropathy. Organogenesis, 2012, 8, 18-21.	0.4	26
22	In situ hydrogels enhancing postoperative functional recovery by reducing iron overload after intracerebral haemorrhage. International Journal of Pharmaceutics, 2017, 534, 179-189.	2.6	26
23	Human Hair Keratin Hydrogels Alleviate Rebleeding after Intracerebral Hemorrhage in a Rat Model. ACS Biomaterials Science and Engineering, 2019, 5, 1113-1122.	2.6	24
24	Sinking-Magnetic Microparticles Prepared by the Electrospray Method for Enhanced Gastric Antimicrobial Delivery. Molecular Pharmaceutics, 2014, 11, 1640-1650.	2.3	23
25	Fabrication of an expandable keratin sponge for improved hemostasis in a penetrating trauma. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110367.	2.5	23
26	QTY Code-designed Water-soluble Fc-fusion Cytokine Receptors Bind to their Respective Ligands. QRB Discovery, 2020, 1, e4.	0.6	23
27	Enteric-coated sustained-release nanoparticles by coaxial electrospray: preparation, characterization, and in vitro evaluation. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	22
28	Neural Injuries Induced by Hydrostatic Pressure Associated With Mass Effect after Intracerebral Hemorrhage. Scientific Reports, 2018, 8, 9195.	1.6	22
29	Fabrication of ulcer-adhesive oral keratin hydrogel for gastric ulcer healing in a rat. International Journal of Energy Production and Management, 2021, 8, rbab008.	1.9	22
30	Recombinant human hair keratin proteins for halting bleeding. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 456-461.	1.9	20
31	A novel multiple drug release system in vitro based on adjusting swelling core of emulsion electrospun nanofibers with core–sheath structure. Materials Science and Engineering C, 2014, 44, 109-116.	3.8	18
32	Study of Mechanisms of Recombinant Keratin Solubilization with Enhanced Wound Healing Capability. Chemistry of Materials, 2020, 32, 3122-3133.	3.2	18
33	Porous hydrophilic core/hydrophobic shell nanoparticles for particle size and drug release control. Materials Science and Engineering C, 2015, 49, 51-57.	3.8	17
34	Resistance from agar medium impacts the helical growth of Arabidopsis primary roots. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85, 43-50.	1.5	17
35	An enhanced charge-driven intranasal delivery of nicardipine attenuates brain injury after intracerebral hemorrhage. International Journal of Pharmaceutics, 2019, 566, 46-56.	2.6	16
36	Rhein-PEG-nHA conjugate as a bone targeted drug delivery vehicle for enhanced cancer chemoradiotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 27, 102196.	1.7	16

#	Article	IF	CITATIONS
37	Development of a discriminative biphasic in vitro dissolution test and correlation with in vivo pharmacokinetic studies for differently formulated racecadotril granules. Journal of Controlled Release, 2017, 255, 202-209.	4.8	15
38	Preparation, evaluation, and <i>in vitro</i> release study of <i>O</i> â€carboxymethyl chitosan nanoparticles loaded with gentamicin and salicylic acid. Journal of Applied Polymer Science, 2012, 123, 1684-1689.	1.3	14
39	Density-dependent gastroretentive microparticles motion in human gastric emptying studied using computer simulation. European Journal of Pharmaceutical Sciences, 2015, 70, 72-81.	1.9	14
40	Hair keratin promotes wound healing in rats with combined radiation-wound injury. Journal of Materials Science: Materials in Medicine, 2020, 31, 28.	1.7	14
41	Brain Drug Delivery Systems for the Stroke Intervention and Recovery. Current Pharmaceutical Design, 2017, 23, 2258-2267.	0.9	14
42	Nanoscale delivery systems for multiple drug combinations in cancer. Future Oncology, 2011, 7, 1347-1357.	1.1	12
43	The Underestimated Role of Mechanical Stimuli in Brain Diseases and the Relate d In Vitro Models. Current Pharmaceutical Design, 2017, 23, 2161-2176.	0.9	11
44	A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1019-1027.	1.4	10
45	Establishment of an Experimental Intracerebral Haemorrhage Model for Mass Effect Research using a Thermo-sensitive Hydrogel. Scientific Reports, 2019, 9, 13838.	1.6	10
46	Insight into the Regulatory Function of Human Hair Keratins in Wound Healing Using Proteomics. Advanced Biology, 2020, 4, e1900235.	3.0	10
47	Mesenchymal Stem Cells Transplantation in Intracerebral Hemorrhage: Application and Challenges. Frontiers in Cellular Neuroscience, 2021, 15, 653367.	1.8	10
48	Rational Design of Highâ€Performance Keratinâ€Based Hemostatic Agents. Advanced Healthcare Materials, 2022, 11, .	3.9	9
49	Preparation and mechanism of hydroxyapatite hollow microspheres with different surface charge by biomimetic method. Journal of Materials Science: Materials in Medicine, 2020, 31, 47.	1.7	8
50	Role of mass effect and trehalose on early erythrolysis after experimental intracerebral hemorrhage. Journal of Neurochemistry, 2022, 160, 88-99.	2.1	6
51	Editorial: Review on Intracerebral Haemorrhage: Multidisciplinary Approaches to the Injury Mechanism Analysis and Therapeutic Strategies. Current Pharmaceutical Design, 2017, 23, 2159-2160.	0.9	5
52	Nano Calcium-Deficient Hydroxyapatite/O-carboxymethyl Chitosan-CaCl2 Microspheres Loaded with Rhein for Bone Defect Repair. Journal of Bionic Engineering, 2022, 19, 1087-1099.	2.7	5
53	Researching the dose ratio in a controlled release multiple-drug delivery system: using combination therapy with porous microparticles for the treatment of Helicobacter pylori infection. Journal of Materials Chemistry B, 2015, 3, 417-431.	2.9	4
54	Evaluating tensile damage of brain tissue in intracerebral hemorrhage based on strain energy. Experimental and Therapeutic Medicine, 2018, 16, 4843-4852.	0.8	4

#	Article	IF	CITATIONS
55	Keratin-A6ACA NPs for gastric ulcer diagnosis and repair. Journal of Materials Science: Materials in Medicine, 2021, 32, 66.	1.7	3
56	Computational characterization of hemorheology in the lenticulostriate arteries predicts the location of vessel rupture during hypertensive intracerebral hemorrhage. Brain Hemorrhages, 2022, 3, 5-13.	0.4	1
57	A Potential In Vitro 3D Cell Model to Study Vascular Diseases by Simulating the Vascular Wall Microenvironment and Its Application. Life, 2022, 12, 427.	1.1	1
58	Proteomic analysis of rat brain related to mass effect after experimental intracerebral hemorrhage. Brain Hemorrhages, 2021, , .	0.4	0
59	Editorial: Pluripotent Cells for Stroke: From Mechanism to Therapeutic Strategies. Frontiers in Cellular Neuroscience, 2021, 15, 738240.	1.8	0