Jorge F Toro-Vazquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7757858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of the denaturation temperature of the Spike protein S1 of SARS-CoV-2 (2019 nCoV) by Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120269.	3.9	7
2	Rheological properties of ethyl cellulose-monoglyceride-candelilla wax oleogel vis-a-vis edible shortenings. Carbohydrate Polymers, 2021, 252, 117171.	10.2	55
3	Betulinic Acid Nanogels: Rheological, Microstructural Characterization and Evaluation of their Anti-inflammatory Activity. Current Drug Delivery, 2021, 18, 212-223.	1.6	2
4	Development of Candelilla Wax Oleogels as a Medium of Controlled Release of Phosphorus in an In Vitro Model. Applied Sciences (Switzerland), 2021, 11, 3815.	2.5	1
5	Study of the relationship of hydrogen bonding and hydrophobic interactions in W/O organogel emulsions by Raman microspectroscopy. Colloids and Interface Science Communications, 2021, 44, 100486.	4.1	5
6	Relationship of rheological and thermal properties in organogel emulsions (W/O): Influence of temperature, time, and surfactant concentration on thermomechanical behavior. Journal of Molecular Liquids, 2021, 337, 116403.	4.9	9
7	Development and characterization of structured water-in-oil emulsions with ethyl cellulose oleogels. Food Research International, 2021, 150, 110763.	6.2	17
8	Self-Assembly of Symmetrical and Asymmetrical Alkyl Esters in the Neat State and in Oleogels. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	13
9	Thermal and emulsifying properties of globulins from chan (<i>Hyptis suaveolens</i> L. Poit) seeds. Journal of Food Processing and Preservation, 2020, 44, e14652.	2.0	2
10	Encapsulation of an insulin-modified phosphatidylcholine complex in a self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin delivery. Journal of Drug Delivery Science and Technology, 2020, 57, 101622.	3.0	10
11	Selfâ€Assembly of Saturated and Unsaturated Phosphatidylcholine in Mineral and Vegetable Oils. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 273-289.	1.9	12
12	Vegetable and Mineral Oil Organogels Based on Monoglyceride and Lecithin Mixtures. Food Biophysics, 2019, 14, 326-345.	3.0	16
13	Structuration, elastic properties scaling, and mechanical reversibility of candelilla wax oleogels with and without emulsifiers. Food Research International, 2019, 122, 471-478.	6.2	24
14	Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydrate Polymers, 2019, 205, 98-105.	10.2	90
15	Wax Oleogels. , 2018, , 133-171.		20
16	Combined effect of shearing and cooling rate on the rheology of organogels developed by selected gelators. Food Research International, 2017, 93, 52-65.	6.2	17
17	Physicochemical and functional properties of 11S globulin from chan (Hyptis suaveolens L. poit) seeds. Journal of Cereal Science, 2017, 77, 66-72.	3.7	6
18	Self-assembly in vegetable oils of ionic gelators derived from (R)-12-hydroxystearic acid. Food Structure, 2017, 13, 56-69.	4.5	7

Jorge F Toro-Vazquez

#	Article	IF	CITATIONS
19	Simplifying Hansen Solubility Parameters for Complex Edible Fats and Oils. Food Biophysics, 2016, 11, 283-291.	3.0	43
20	Phase behavior, structure and rheology of candelilla wax/fully hydrogenated soybean oil mixtures with and without vegetable oil. Food Research International, 2016, 89, 828-837.	6.2	37
21	Phase Behavior and Structure of Systems Based on Mixtures of <i>n</i> â€Hentriacontane and Melissic Acid. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 533-540.	1.9	18
22	Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Food Research International, 2015, 72, 37-46.	6.2	95
23	Characterization and Biocompatibility of Chitosan Gels with Silver and Gold Nanoparticles. Journal of Nanomaterials, 2014, 2014, 1-11.	2.7	17
24	Comparing the crystallization and rheological behavior of organogels developed by pure and commercial monoglycerides in vegetable oil. Food Research International, 2014, 64, 946-957.	6.2	84
25	Influence of Processing Conditions on the Physicochemical Properties of Complex Fat Systems. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1247-1259.	1.9	11
26	Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science, 2014, 2, 22-31.	3.0	89
27	Shear rate and cooling modeling for the study of candelilla wax organogels' rheological properties. Journal of Food Engineering, 2013, 119, 611-618.	5.2	19
28	Modification of Solubility and Heat-Induced Gelation of Amaranth 11S Globulin by Protein Engineering. Journal of Agricultural and Food Chemistry, 2013, 61, 3509-3516.	5.2	25
29	Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Research International, 2013, 54, 1360-1368.	6.2	101
30	Effects of Processing and Composition on the Crystallization and Mechanical Properties of Waterâ€inâ€Oil Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1195-1201.	1.9	13
31	Cooling Rate Effects on the Microstructure, Solid Content, and Rheological Properties of Organogels of Amides Derived from Stearic and (<i>R</i>)-12-Hydroxystearic Acid in Vegetable Oil. Langmuir, 2013, 29, 7642-7654.	3.5	88
32	Shearing as a variable to engineer the rheology of candelilla wax organogels. Food Research International, 2012, 49, 580-587.	6.2	44
33	Molecular Interactions of Triacylglycerides in Blends of Cocoa Butter with trans-free Vegetable Oils. , 2012, , 393-416.		2
34	Physical Properties of Cocoa Butter/Vegetable Oil Blends Crystallized in a Scraped Surface Heat Exchanger. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 199-209.	1.9	16
35	Crystallization kinetics of palm oil in blends with palm-based diacylglycerol. Food Research International, 2011, 44, 425-435.	6.2	73
36	Candelilla Wax as an Organogelator for Vegetable Oils—An Alternative to Develop Trans-free Products for the Food Industry. , 2011, , 119-148.		11

#	Article	IF	CITATIONS
37	The Effect of Shearing in the Thermo-mechanical Properties of Candelilla Wax and Candelilla Wax–Tripalmitin Organogels. Food Biophysics, 2011, 6, 359-376.	3.0	69
38	Relationship Between Molecular Structure and Thermo-mechanical Properties of Candelilla Wax and Amides Derived from (R)-12-Hydroxystearic Acid as Gelators of Safflower Oil. Food Biophysics, 2010, 5, 193-202.	3.0	75
39	Pre-nucleation Structuring of Triacylglycerols and Its Effect on the Activation Energy of Nucleation. Food Biophysics, 2010, 5, 218-226.	3.0	13
40	Pre-Nucleation Structuring of TAG Melts Revealed by Fluorescence Polarization Spectroscopy and Molecular Mechanics Simulations. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 1115-1125.	1.9	17
41	Effect of replacing dietary fish oil with vegetable oils on the fatty acid composition of muscle tissue of juvenile California halibut (Paralichthys californicus). Ciencias Marinas, 2010, 36, 121-133.	0.4	3
42	Thermoâ€nechanical properties of candelilla wax and dotriacontane organogels in safflower oil. European Journal of Lipid Science and Technology, 2009, 111, 207-215.	1.5	76
43	Rheological Properties of Candelilla Wax and Dotriacontane Organogels Measured with a Trueâ€Gap System. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 765-772.	1.9	41
44	The Effect of Tripalmitin Crystallization on the Thermomechanical Properties of Candelilla Wax Organogels. Food Biophysics, 2009, 4, 199-212.	3.0	39
45	The cooling rate effect on the microstructure and rheological properties of blends of cocoa butter with vegetable oils. Food Research International, 2007, 40, 47-62.	6.2	60
46	Thermal and Textural Properties of Organogels Developed by Candelilla Wax in Safflower Oil. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 989-1000.	1.9	268
47	Physicochemical and Rheological Properties of Crystallized Blends Containing <i>trans</i> â€free and Partially Hydrogenated Soybean Oil. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 1081-1093.	1.9	31
48	Structural characteristics of gels formed by mixtures of carrageenan and mucilage gum from Opuntia ficus indica. Carbohydrate Polymers, 2006, 63, 299-309.	10.2	30
49	Crystallization of cocoa butter with and without polar lipids evaluated by rheometry, calorimetry and polarized light microscopy. European Journal of Lipid Science and Technology, 2005, 107, 641-655.	1.5	35
50	The effect of supercooling on crystallization of cocoa butter-vegetable oil blends. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 471-479.	1.9	22
51	Rheometry and polymorphism of cocoa butter during crystallization under static and stirring conditions. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 195-202.	1.9	51
52	Effects of Crystalline Microstructure on Oil Migration in a Semisolid Fat Matrix. Crystal Growth and Design, 2004, 4, 731-736.	3.0	74
53	Effects of starvation and dietary lipid on the lipid and fatty acid composition of muscle tissue of juvenile green abalone (Haliotis fulgens). Aquaculture, 2004, 238, 329-329.	3.5	0
54	Effects of starvation and dietary lipid on the lipid and fatty acid composition of muscle tissue of juvenile green abalone (Haliotis fulgens). Aquaculture, 2004, 238, 329-341.	3.5	39

Jorge F Toro-Vazquez

#	Article	IF	CITATIONS
55	Interaction of granular maize starch with lysophosphatidylcholine evaluated by calorimetry, mechanical and microscopy analysis. Journal of Cereal Science, 2003, 38, 269-279.	3.7	20
56	Chemical and physicochemical properties of dried wet masa and dry masa flour. Journal of the Science of Food and Agriculture, 2003, 83, 408-412.	3.5	15
57	Rheological and thermal characterization of Okenia hypogaea (Schlech. & Cham.) starch. Carbohydrate Polymers, 2003, 52, 297-310.	10.2	25
58	Effect of triacylglycerols in formulated diets on growth and fatty acid composition in tissue of green abalone (Haliotis fulgens). Aquaculture, 2003, 224, 257-270.	3.5	54
59	Concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil by hydrolysis and urea complexation. Food Research International, 2003, 36, 721-727.	6.2	87
60	Effect of the seaweed Macrocystis pyrifera and a formulated diet on growth and fatty acid composition in the green abalone, Haliotis fulgens, under commercial culture conditions. Ciencias Marinas, 2003, 29, 645-654.	0.4	11
61	The avrami index and the fractal dimension in vegetable oil crystallization. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 855-866.	1.9	35
62	Induction Time of Crystallization in Vegetable Oils, Comparative Measurements by Differential Scanning Calorimetry and Diffusive Light Scattering. Journal of Food Science, 2002, 67, 1057-1064.	3.1	34
63	Laboratory scale production of maltodextrins and glucose syrup from banana starch. Acta CientÃfica Venezolana, 2002, 53, 44-8.	0.1	2
64	Chemical and Physicochemical Properties of Maize Starch After Industrial Nixtamalization. Cereal Chemistry, 2001, 78, 543-550.	2.2	11
65	ADSORPTION EFFICIENCY OF SELECTED ADSORBENTS IN SESAME OIL MISCELLAS. Journal of Food Lipids, 2000, 7, 151-162.	1.0	4
66	Crystallization kinetics of palm stearin in blends with sesame seed oil. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 297-310.	1.9	79
67	Cálculo de algunos parámetros de la cristalización de triacilglicéridos de aceites vegetales / Determination of some crystallization parameters for triacylglycerides of vegetable oils. Food Science and Technology International, 1999, 5, 67-78.	2.2	3
68	Fatty acid composition and its relationship with physicochemical properties of pecan (Carya) Tj ETQq0 0 0 rgBT $/$	Overlock I	10 Tf 50 222
69	CHEMICAL AND PHYSICOCHEMICAL CHARACTERISTICS OF PECAN (CARYA ILLINOENSIS) OIL NATIVE OF THE CENTRAL REGION OF MEXICO. Journal of Food Lipids, 1998, 5, 211-231.	1.0	14
70	Evaluation of tripalmitin crystallization in sesame oil through a modified avrami equation. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 73-76.	1.9	19
71	Physicochemical Aspects of Triacylglycerides and Their Association to Functional Properties of Vegetable Oils. ACS Symposium Series, 1998, , 230-253.	0.5	1
72	PARAMETERS THAT DETERMINE TRIPALMITIN CRYSTALLIZATION IN SESAME OIL. Journal of Food Lipids, 1997, 4, 269-282.	1.0	8

#	Article	IF	CITATIONS
73	Isothermal crystallization of tripalmitin in sesame oil. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 69-76.	1.9	26
74	The Freundlich isotherm in studying adsorption in oil processing. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 1627-1633.	1.9	81
75	Viscosity and its relationship to crystallization in a binary system of saturated triacylglycerides and sesame seed oil. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 1237-1246.	1.9	24
76	Competitive adsorption among sesame oil components in a concentrated miscella system. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 675-679.	1.9	9
77	A multiple-variable approach to study corn oil oxidation. JAOCS, Journal of the American Oil Chemists' Society, 1993, 70, 261-267.	1.9	11
78	Adsorption isotherms of sesame oil in a concentrated miscella system. JAOCS, Journal of the American Oil Chemists' Society, 1993, 70, 589-594.	1.9	17
79	Regressional models that describe oil absolute viscosity. JAOCS, Journal of the American Oil Chemists' Society, 1993, 70, 1115-1119.	1.9	29
80	Adsorption isotherms of squash (<i>Cucurbita moschata</i>) seed oil on activated carbon. JAOCS, Journal of the American Oil Chemists' Society, 1991, 68, 596-599.	1.9	11
81	Interactions Among Oil Components During Adsorption: Effects on Carotenoids and Peroxides. Journal of Food Science, 1991, 56, 1648-1650.	3.1	11
82	Physicochemical Parameters of Protein Additives and Their Emulsifying Properties. Journal of Food Science, 1989, 54, 1177-1185.	3.1	12
83	Vegetable and mineral oil oleogels developed at different monoglyceride to lecithin molar ratios. IAOCS, Journal of the American Oil Chemists' Society, O	1.9	3