
Spyridon Mourtas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7757352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. Pharmaceutics, 2018, 10, 218.	4.5	390
2	Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer's disease. Journal of Controlled Release, 2017, 260, 61-77.	9.9	251
3	Multifunctional nanoliposomes with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. European Journal of Medicinal Chemistry, 2014, 80, 175-183.	5.5	201
4	Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials, 2011, 32, 1635-1645.	11.4	198
5	Curcumin-conjugated nanoliposomes with high affinity for AÎ ² deposits: Possible applications to Alzheimer disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 712-721.	3.3	134
6	Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer's Al² peptide. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 541-550.	3.3	122
7	Liposomal drugs dispersed in hydrogels. Colloids and Surfaces B: Biointerfaces, 2007, 55, 212-221.	5.0	119
8	Liposomes for drug delivery to the lungs by nebulization. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 655-666.	4.3	115
9	pH-Responsive Hydrogel/Liposome Soft Nanocomposites For Tuning Drug Release. Biomacromolecules, 2011, 12, 3023-3030.	5.4	84
10	Integrity of liposomes in presence of cyclodextrins: Effect of liposome type and lipid composition. International Journal of Pharmaceutics, 2007, 333, 167-176.	5.2	71
11	Magnetoliposomes with high USPIO entrapping efficiency, stability and magnetic properties. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 572-579.	3.3	59
12	PLGA, chitosan or chitosan-coated PLGA microparticles for alveolar delivery?. Colloids and Surfaces B: Biointerfaces, 2008, 62, 220-231.	5.0	57
13	The effect of added liposomes on the rheological properties of a hydrogel: A systematic study. Journal of Colloid and Interface Science, 2008, 317, 611-619.	9.4	56
14	Increasing the stability of curcumin in serum with liposomes or hybrid drug-in-cyclodextrin-in-liposome systems: A comparative study. International Journal of Pharmaceutics, 2014, 476, 108-115.	5.2	53
15	Protective properties of non-nucleoside reverse transcriptase inhibitor (MC1220) incorporated into liposome against intravaginal challenge of Rhesus Macaques with RT-SHIV. Virology, 2010, 405, 225-233.	2.4	50
16	Multifunctional LUV liposomes decorated for BBB and amyloid targeting - B. In vivo brain targeting potential in wild-type and APP/PS1 mice. European Journal of Pharmaceutical Sciences, 2017, 102, 180-187.	4.0	41
17	Recent advances on anti-HIV vaginal delivery systems development. Advanced Drug Delivery Reviews, 2015, 92, 123-145.	13.7	36
18	Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential. International Journal of Pharmaceutics, 2017, 525, 293-312.	5.2	35

Spyridon Mourtas

#	Article	IF	CITATIONS
19	Covalent immobilization of liposomes on plasma functionalized metallic surfaces. Colloids and Surfaces B: Biointerfaces, 2011, 84, 214-220.	5.0	33
20	Dexamethasone Incorporating Liposomes: Effect of Lipid Composition on Drug Trapping Efficiency and Vesicle Stability. Drug Delivery, 2007, 14, 441-445.	5.7	29
21	Multifunctional LUV liposomes decorated for BBB and amyloid targeting. A. In vitro proof-of-concept. European Journal of Pharmaceutical Sciences, 2017, 101, 140-148.	4.0	27
22	Nanoliposomes presenting on surface a cis-glycofused benzopyran compound display binding affinity and aggregation inhibition ability towards Amyloid β1-42 peptide. European Journal of Medicinal Chemistry, 2014, 85, 43-50.	5.5	23
23	Topical Nonnucleoside Reverse Transcriptase Inhibitor MC 1220 Partially Prevents Vaginal RT-SHIV Infection of Macaques. AIDS Research and Human Retroviruses, 2011, 27, 933-943.	1.1	22
24	Multifunctional doxorubicin-loaded magnetoliposomes with active and magnetic targeting properties. European Journal of Pharmaceutical Sciences, 2018, 123, 162-172.	4.0	21
25	Haemocompatibility improvement of metallic surfaces by covalent immobilization of heparin–liposomes. International Journal of Pharmaceutics, 2012, 432, 91-98.	5.2	20
26	Stability of Protein-Encapsulating DRV Liposomes After Freeze-Drying: A Study with BSA and t-PA. Journal of Liposome Research, 2006, 16, 403-416.	3.3	19
27	Integrity of liposomes in presence of various formulation excipients, when dispersed in aqueous media and in hydrogels. Colloids and Surfaces B: Biointerfaces, 2008, 61, 270-276.	5.0	19
28	Haemolytic Activity of Liposomes: Effect of Vesicle Size, Lipid Concentration and Polyethylene Glycol-Lipid or Arsonolipid Incorporation. Journal of Biomedical Nanotechnology, 2009, 5, 409-415.	1.1	19
29	Complex Hydrogel Systems Composed of Polymers, Liposomes, and Cyclodextrins: Implications of Composition on Rheological Properties and Aging. Langmuir, 2009, 25, 8480-8488.	3.5	15
30	LIPOSOMAL GELS FOR VAGINAL DELIVERY OF THE MICROBICIDE MC-1220: PREPARATION AND IN VIVO VAGINAL TOXICITY AND PHARMACOKINETICS. Nano LIFE, 2010, 01, 195-205.	0.9	10
31	Liposomes Decorated with 2-(4′-Aminophenyl)benzothiazole Effectively Inhibit Aβ _{1–42} Fibril Formation and Exhibit in Vitro Brain-Targeting Potential. Biomacromolecules, 2020, 21, 4685-4698.	5.4	10
32	Preparation of Benzothiazolyl-Decorated Nanoliposomes. Molecules, 2019, 24, 1540.	3.8	9
33	Comparison of Various Types of Ligand Decorated Nanoliposomes for their Ability to Inhibit Amyloid Aggregation and to Reverse Amyloid Cytotoxicity. Current Topics in Medicinal Chemistry, 2015, 15, 2267-2276.	2.1	9
34	Moxifloxacin Liposomes: Effect of Liposome Preparation Method on Physicochemical Properties and Antimicrobial Activity against Staphylococcus epidermidis. Pharmaceutics, 2022, 14, 370.	4.5	8
35	Inhibition of Bacterial Attachment on Surfaces by Immobilization of Tobramycin-Loaded Liposomes. Journal of Biomedical Nanotechnology, 2015, 11, 2186-2196.	1.1	6
36	Preparation, Physicochemical Properties, and In Vitro Toxicity towards Cancer Cells of Novel Types of Arsonoliposomes. Pharmaceutics, 2020, 12, 327.	4.5	6

Spyridon Mourtas

#	Article	IF	CITATIONS
37	Hemocompatibility of amyloid and/or brain targeted liposomes. Future Medicinal Chemistry, 2019, 11, 693-705.	2.3	5
38	Convergent Synthesis of Thioether Containing Peptides. Molecules, 2020, 25, 218.	3.8	4
39	Resveratrol loaded in cationic glucosylated liposomes to treat Staphylococcus epidermidis infections. Chemistry and Physics of Lipids, 2022, 243, 105174.	3.2	4
40	Brain targeting with lipidic nanocarriers. , 2018, , 255-324.		2
41	Novel TNBC-Targeted DOX-Arsonoliposomes. Proceedings (mdpi), 2021, 78, 17.	0.2	1
42	Folic Acid—Targeted Doxorubicin Drug Delivery System for Triple-Negative Breast Cancer Treatment. Proceedings (mdpi), 2021, 78, 4.	0.2	1
43	Solid-Phase Insertion of N-mercaptoalkylglycine Residues into Peptides. Molecules, 2019, 24, 4261.	3.8	Ο