Yang-Fang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7757036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands. Journal of Materials Chemistry, 2008, 18, 675.	6.7	229
2	In vitro Studies of Functionalized Mesoporous Silica Nanoparticles for Photodynamic Therapy. Advanced Materials, 2009, 21, 172-177.	21.0	196
3	Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of Cs ₃ Sb ₂ I ₉ . ACS Applied Materials & Interfaces, 2018, 10, 2566-2573.	8.0	137
4	Synthesis and Characterization of Coreâ^'Shell GaP@GaN and GaN@GaP Nanowires. Nano Letters, 2003, 3, 537-541.	9.1	136
5	Plant leaf-derived graphene quantum dots and applications for white LEDs. New Journal of Chemistry, 2014, 38, 4946-4951.	2.8	134
6	Extraordinarily Sensitive and Lowâ€Voltage Operational Clothâ€Based Electronic Skin for Wearable Sensing and Multifunctional Integration Uses: A Tactileâ€Induced Insulatingâ€toâ€Conducting Transition. Advanced Functional Materials, 2016, 26, 1286-1295.	14.9	134
7	High photocurrent gain in SnO2 nanowires. Applied Physics Letters, 2008, 93, 112115.	3.3	101
8	Bi-hierarchical nanostructures of donor–acceptor copolymer and fullerene for high efficient bulk heterojunction solar cells. Energy and Environmental Science, 2013, 6, 1938.	30.8	101
9	Electricalâ€Polarizationâ€Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Advanced Functional Materials, 2016, 26, 620-628.	14.9	98
10	Electrically Driven White Light Emission from Intrinsic Metal–Organic Framework. ACS Nano, 2016, 10, 8366-8375.	14.6	93
11	Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2016, 8, 466-471.	8.0	86
12	Wrinkled 2D Materials: A Versatile Platform for Lowâ€Threshold Stretchable Random Lasers. Advanced Materials, 2017, 29, 1703549.	21.0	85
13	A Highly Sensitive Grapheneâ€Organic Hybrid Photodetector with a Piezoelectric Substrate. Advanced Functional Materials, 2014, 24, 6818-6825.	14.9	84
14	Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions. Applied Physics Letters, 2009, 95, 131117.	3.3	82
15	Ultraâ€Thin Layered Ternary Single Crystals [Sn(S <i>_x</i> Se _{1â^'} <i>_x</i>) ₂] with Bandgap Engineering for High Performance Phototransistors on Versatile Substrates. Advanced Functional Materials. 2016. 26. 3630-3638.	14.9	77
16	Stretchable organic memory: toward learnable and digitized stretchable electronic applications. NPG Asia Materials, 2014, 6, e87-e87.	7.9	74
17	Lead-Free Antimony-Based Light-Emitting Diodes through the Vapor–Anion-Exchange Method. ACS Applied Materials & Interfaces, 2019, 11, 35088-35094.	8.0	74
18	Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2015, 7, 22767-22774.	8.0	71

#	Article	IF	CITATIONS
19	Enhancing the efficiency of perovskite solar cells using mesoscopic zinc-doped TiO ₂ as the electron extraction layer through band alignment. Journal of Materials Chemistry A, 2018, 6, 16920-16931.	10.3	71
20	Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano, 2019, 13, 12540-12552.	14.6	69
21	Rewritable, Moldable, and Flexible Stickerâ€Type Organic Memory on Arbitrary Substrates. Advanced Functional Materials, 2014, 24, 1430-1438.	14.9	67
22	A White Random Laser. Scientific Reports, 2018, 8, 2720.	3.3	65
23	Self-polarized spin-nanolasers. Nature Nanotechnology, 2014, 9, 845-850.	31.5	63
24	Highly Sensitive, Visible Blind, Wearable, and Omnidirectional Near-Infrared Photodetectors. ACS Nano, 2018, 12, 9596-9607.	14.6	62
25	Transparent, Wearable, Broadband, and Highly Sensitive Upconversion Nanoparticles and Graphene-Based Hybrid Photodetectors. ACS Photonics, 2018, 5, 2336-2347.	6.6	59
26	Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metalâ€Organic Framework Broadband Wearable Photodetectors. Advanced Functional Materials, 2018, 28, 1804802.	14.9	59
27	Effects of cathode buffer layers on the efficiency of bulk-heterojunction solar cells. Applied Physics Letters, 2010, 96, .	3.3	58
28	Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors. Scientific Reports, 2014, 4, 6736.	3.3	57
29	Facile synthesis of wurtzite copper–zinc–tin sulfidenanocrystals from plasmonic djurleite nuclei. Journal of Materials Chemistry A, 2013, 1, 337-341.	10.3	56
30	Stretchable Random Lasers with Tunable Coherent Loops. ACS Nano, 2015, 9, 12436-12441.	14.6	56
31	p-Si nanowires/SiO2/n-ZnO heterojunction photodiodes. Applied Physics Letters, 2010, 97, .	3.3	55
32	A Highly-Efficient Single Segment White Random Laser. ACS Nano, 2018, 12, 11847-11859.	14.6	51
33	Synthesis, optical and photovoltaic properties of bismuth sulfide nanorods. CrystEngComm, 2012, 14, 3645.	2.6	49
34	Preparation of metal halide perovskite solar cells through a liquid droplet assisted method. Journal of Materials Chemistry A, 2015, 3, 9257-9263.	10.3	47
35	Infrared lasing in InN nanobelts. Applied Physics Letters, 2007, 90, 123109.	3.3	46
36	Low operation voltage macromolecular composite memory assisted by graphene nanoflakes. Journal of Materials Chemistry C, 2013, 1, 552-559.	5.5	46

#	Article	IF	CITATIONS
37	Facile Fabrication of Selfâ€Assembly Functionalized Polythiophene Hole Transporting Layer for High Performance Perovskite Solar Cells. Advanced Science, 2021, 8, 2002718.	11.2	46
38	Enhancing the efficiency of low bandgap conducting polymer bulk heterojunction solar cells using P3HT as a morphology control agent. Journal of Materials Chemistry A, 2013, 1, 2447.	10.3	44
39	Multifunctionality of Giant and Long-Lasting Persistent Photoconductivity: Semiconductor–Conductor Transition in Graphene Nanosheets and Amorphous InGaZnO Hybrids. ACS Photonics, 2015, 2, 1057-1064.	6.6	41
40	Dissolvable and Recyclable Random Lasers. ACS Nano, 2017, 11, 7600-7607.	14.6	41
41	Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod. Applied Physics Letters, 2008, 92, .	3.3	40
42	Color-Tunable Light-Emitting Device Based on the Mixture of CdSe Nanorods and Dots Embedded in Liquid-Crystal Cells. Journal of Physical Chemistry C, 2010, 114, 7995-7998.	3.1	39
43	Diketopyrrolopyrrole-based oligomer modified TiO2 nanorods for air-stable and all solution processed poly(3-hexylthiophene):TiO2 bulk heterojunction inverted solar cell. Journal of Materials Chemistry, 2012, 22, 10589.	6.7	39
44	Ultrahigh-gain single SnO2 nanowire photodetectors made with ferromagnetic nickel electrodes. NPG Asia Materials, 2012, 4, e26-e26.	7.9	38
45	High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO. Journal of Materials Chemistry C, 2013, 1, 5064.	5.5	38
46	Photo-Kelvin probe force microscopy for photocatalytic performance characterization of single filament of TiO2 nanofiber photocatalysts. Journal of Materials Chemistry A, 2013, 1, 5715.	10.3	37
47	Nanoscale morphology and performance of molecular-weight-dependent poly(3-hexylthiophene)/TiO2 nanorod hybrid solar cells. Journal of Materials Chemistry, 2008, 18, 4097.	6.7	36
48	Enhanced charge transport in hybrid polymer/ZnO-nanorod solar cells assisted by conductive small molecules. Journal of Materials Chemistry, 2012, 22, 15726.	6.7	36
49	Multicolor Ultralowâ€Threshold Random Laser Assisted by Verticalâ€Graphene Network. Advanced Optical Materials, 2018, 6, 1800382.	7.3	35
50	Continuous broadband emission from a metal–organic framework as a human-friendly white light source. Journal of Materials Chemistry C, 2016, 4, 4728-4732.	5.5	34
51	Efficient molecular solar cells processed from green solvent mixtures. Journal of Materials Chemistry A, 2017, 5, 571-582.	10.3	34
52	Integration of Nanoscale Light Emitters and Hyperbolic Metamaterials: An Efficient Platform for the Enhancement of Random Laser Action. ACS Photonics, 2018, 5, 718-727.	6.6	34
53	Ultrahigh Sensitive and Flexible Magnetoelectronics with Magnetic Nanocomposites: Toward an Additional Perception of Artificial Intelligence. ACS Applied Materials & Interfaces, 2018, 10, 17393-17400.	8.0	34
54	Self-Powered, Self-Healed, and Shape-Adaptive Ultraviolet Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 9755-9765.	8.0	34

#	Article	IF	CITATIONS
55	Highly Stretchable Labelâ€like Random Laser on Universal Substrates. Advanced Materials Technologies, 2016, 1, 1600068.	5.8	33
56	Magnetically Controllable Random Lasers. Advanced Materials Technologies, 2017, 2, 1700170.	5.8	32
57	Energetically Autonomous, Wearable, and Multifunctional Sensor. ACS Sensors, 2018, 3, 113-120.	7.8	32
58	Modulating Performance and Stability of Inorganic Lead-Free Perovskite Solar Cells via Lewis-Pair Mediation. ACS Applied Materials & Interfaces, 2020, 12, 32649-32657.	8.0	32
59	Graphene-lead zirconate titanate optothermal field effect transistors. Applied Physics Letters, 2012, 100, 113507.	3.3	31
60	A graphene-based surface plasmon sensor. Nano Research, 2012, 5, 695-702.	10.4	31
61	A Bi-Anti-Ambipolar Field Effect Transistor. ACS Nano, 2021, 15, 8686-8693.	14.6	30
62	Dirac point induced ultralow-threshold laser and giant optoelectronic quantum oscillations in graphene-based heterojunctions. Nature Communications, 2017, 8, 256.	12.8	27
63	Efficient Light Harvesting by Well-Aligned In ₂ O ₃ Nanopushpins as Antireflection Layer on Si Solar Cells. Journal of Physical Chemistry C, 2011, 115, 13083-13087.	3.1	26
64	Electrically Pumped Whiteâ€Lightâ€Emitting Diodes Based on Histidineâ€Doped MoS ₂ Quantum Dots. Small, 2019, 15, e1901908.	10.0	26
65	Resonant Energy Transfer between CdSe/ZnS Type I and CdSe/ZnTe Type II Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 15548-15552.	3.1	22
66	Graphene/SiO ₂ /pâ€GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters. Advanced Functional Materials, 2013, 23, 4043-4048.	14.9	22
67	Plasmonic Carbon-Dot-Decorated Nanostructured Semiconductors for Efficient and Tunable Random Laser Action. ACS Applied Nano Materials, 2018, 1, 152-159.	5.0	22
68	Transient and Flexible Photodetectors. ACS Applied Nano Materials, 2018, 1, 5092-5100.	5.0	22
69	Hybrid Optical/Electric Memristor for Light-Based Logic and Communication. ACS Applied Materials & Interfaces, 2019, 11, 4649-4653.	8.0	22
70	Electrically and Optically Readable Light Emitting Memories. Scientific Reports, 2014, 4, 5121.	3.3	21
71	Wurtzite spin lasers. Physical Review B, 2017, 95, .	3.2	21
72	Ultrahighâ€Performance Selfâ€Powered Flexible Photodetector Driven from Photogating, Piezoâ€Phototronic, and Ferroelectric Effects. Advanced Optical Materials, 2020, 8, 1901334.	7.3	21

#	Article	IF	CITATIONS
73	Coherent Förster resonance energy transfer: A new paradigm for electrically driven quantum dot random lasers. Science Advances, 2020, 6, .	10.3	21
74	Self-Sufficient and Highly Efficient Gold Sandwich Upconversion Nanocomposite Lasers for Stretchable and Bio-applications. ACS Applied Materials & Interfaces, 2020, 12, 19840-19854.	8.0	21
75	Enhancing the Photoelectrochemical Hydrogen Evolution Reaction through Nanoscrolling of Two-Dimensional Material Heterojunctions. ACS Nano, 2022, 16, 5743-5751.	14.6	21
76	Enhancing organic–inorganic hybrid solar cell efficiency using rod–coil diblock polymer additive. Journal of Materials Chemistry A, 2013, 1, 665-670.	10.3	20
77	Synthesis, characterization and photovoltaic properties of poly(cyclopentadithiophene-alt-isoindigo). Polymer Chemistry, 2013, 4, 5351.	3.9	20
78	Inkjetâ€Printed Random Lasers. Advanced Materials Technologies, 2018, 3, 1800214.	5.8	20
79	Intrinsic Ultralow-Threshold Laser Action from Rationally Molecular Design of Metal–Organic Framework Materials. ACS Applied Materials & Interfaces, 2020, 12, 36485-36495.	8.0	20
80	Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly(3,4-ethylenedioxythiophene)-poly(styrene-sulfonate) heterojunction. Journal of Applied Physics, 2010, 107, 034310.	2.5	19
81	Broad band plasmonic nanomaterials for high performance solar cells. Journal of Materials Chemistry C, 2016, 4, 513-520.	5.5	19
82	Highly Reliable and Sensitive Tactile Transistor Memory. Advanced Electronic Materials, 2017, 3, 1600548.	5.1	19
83	Whispering Gallery Mode Lasing from Self-Assembled Hexagonal Perovskite Single Crystals and Porous Thin Films Decorated by Dielectric Spherical Resonators. ACS Photonics, 2017, 4, 146-155.	6.6	19
84	Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods. Nanoscale, 2020, 12, 18269-18277.	5.6	19
85	Electrical manipulation of magnetic anisotropy in the composite of liquid crystals and ferromagnetic nanorods. Applied Physics Letters, 2008, 93, 013108.	3.3	18
86	Enhanced charge extraction in inverted hybrid photovoltaic cells assisted by graphene nanoflakes. Journal of Materials Chemistry, 2011, 21, 17462.	6.7	18
87	All-marine based random lasers. Organic Electronics, 2018, 62, 209-215.	2.6	18
88	Multifunctional Random-Laser Smart Inks. ACS Applied Materials & Interfaces, 2020, 12, 49122-49129.	8.0	18
89	High-performance organic nano-floating-gate memory devices based on graphite nanocrystals as charge-trapping elements and high-k Ta2O5 as a controlled gate dielectric. Journal of Materials Chemistry C, 2014, 2, 5342.	5.5	17
90	Electrically Driven Random Laser Memory. Advanced Functional Materials, 2015, 25, 4058-4063.	14.9	17

6

#	Article	IF	CITATIONS
91	Transient and Flexible Hyperbolic Metamaterials on Freeform Surfaces. Scientific Reports, 2018, 8, 9469.	3.3	17
92	Sn-Doping Enhanced Ultrahigh Mobility In _{1–<i>x</i>} Sn _{<i>x</i>} Se Phototransistor. ACS Applied Materials & Interfaces, 2019, 11, 24269-24278.	8.0	17
93	Half-Metallic Property Induced by Double Exchange Interaction in the Double Perovskite Bi2BB′O6 (B, B′) T	ETQq1 1	0.784314 rg
94	Enhanced Emission of (In, Ga) Nitride Nanowires Embedded with Selfâ€Assembled Quantum Dots. Advanced Functional Materials, 2008, 18, 938-942.	14.9	16
95	Integration of Nanoscale and Macroscale Graphene Heterostructures for Flexible and Multilevel Nonvolatile Photoelectronic Memory. ACS Applied Nano Materials, 2020, 3, 608-616.	5.0	16
96	Molecular Chirality Detection with Periodic Arrays of Three-Dimensional Twisted Metamaterials. ACS Applied Materials & Interfaces, 2021, 13, 1152-1157.	8.0	16
97	High-Efficiency InGaN/GaN Core–Shell Nanorod Light-Emitting Diodes With Low-Peak Blueshift and Efficiency Droop. IEEE Nanotechnology Magazine, 2017, 16, 355-358.	2.0	15
98	Self-Healing Nanophotonics: Robust and Soft Random Lasers. ACS Nano, 2019, 13, 8977-8985.	14.6	14
99	Heavy Mediator at Quantum Dot/Graphene Heterojunction for Efficient Charge Carrier Transfer: Alternative Approach for High-Performance Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019, 11, 26518-26527.	8.0	14
100	QD/2D Hybrid Nanoscrolls: A New Class of Materials for Highâ€Performance Polarized Photodetection and Ultralow Threshold Laser Action. Small, 2020, 16, e2003944.	10.0	14
101	Modulating Charge Separation with Hexagonal Boron Nitride Mediation in Vertical Van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 26213-26221.	8.0	14
102	2D Material-Enabled Nanomechanical Bolometer. Nano Letters, 2020, 20, 2326-2331.	9.1	14
103	Ultrafast and Ultrasensitive Gas Sensors Derived from a Large Fermi-Level Shift in the Schottky Junction with Sieve-Layer Modulation. ACS Applied Materials & Interfaces, 2016, 8, 17382-17388.	8.0	13
104	Ultra-high performance flexible piezopotential gated In _{1â^'x} Sn _x Se phototransistor. Nanoscale, 2018, 10, 18642-18650.	5.6	13
105	Achieving Highâ€Performance Perovskite Photovoltaic by Morphology Engineering of Lowâ€Temperature Processed Znâ€Doped TiO 2 Electron Transport Layer. Small, 2020, 16, 2002201.	10.0	13
106	Giant enhancement of inverted polymer solar cells efficiency by manipulating dual interlayers with integrated approaches. RSC Advances, 2015, 5, 1549-1556.	3.6	12
107	Diverse Functionalities of Vertically Stacked Graphene/Single layer n-MoS2/SiO2/p-GaN Heterostructures. Scientific Reports, 2017, 7, 10002.	3.3	12
108	3D Printed Random Lasers. Advanced Materials Technologies, 2020, 5, 1900742.	5.8	12

#	Article	IF	CITATIONS
109	Nanolayered Graphene/Hexagonal Boron Nitride/n-AlGaN Heterostructures as Solar-Blind Deep-Ultraviolet Photodetectors. ACS Applied Nano Materials, 2020, 3, 7595-7603.	5.0	12
110	Superradiant Emission from Coherent Excitons in van Der Waals Heterostructures. Advanced Functional Materials, 2021, 31, 2102196.	14.9	12
111	Fabrication and optical properties of periodical structures based on a water-developable and tunable La0.7Sr0.3MnO3 resist. Journal of Materials Chemistry, 2008, 18, 780.	6.7	11
112	Direct observation of two-step polarization reversal by an opposite field in a substrate-free piezoelectric thin sheet. Applied Physics Letters, 2009, 94, .	3.3	11
113	Residue-free fabrication of high-performance graphene devices by patterned PMMA stencil mask. AIP Advances, 2014, 4, .	1.3	11
114	Environment-insensitive and gate-controllable photocurrent enabled by bandgap engineering of MoS2 junctions. Scientific Reports, 2017, 7, 44768.	3.3	11
115	All Organic Label-like Copper(II) Ions Fluorescent Film Sensors with High Sensitivity and Stretchability. ACS Sensors, 2018, 3, 99-105.	7.8	11
116	Ultrahighly Photosensitive and Highly Stretchable Rippled Structure Photodetectors Based on Perovskite Nanocrystals and Graphene. ACS Applied Electronic Materials, 2019, 1, 1517-1526.	4.3	11
117	Nanoscale Core–Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation. ACS Applied Materials & Interfaces, 2019, 11, 1163-1173.	8.0	11
118	A thermal emitter with selective wavelength: Based on the coupling between photonic crystals and surface plasmon polaritons. Journal of Applied Physics, 2009, 105, 033505.	2.5	10
119	Probing Multiscale Collagenous Tissue by Nonlinear Microscopy. ACS Biomaterials Science and Engineering, 2017, 3, 2825-2831.	5.2	10
120	Single-Molecule-Based Electroluminescent Device as Future White Light Source. ACS Applied Materials & Interfaces, 2019, 11, 4084-4092.	8.0	10
121	Interactive Colorâ€Changing Electronic Skin Based on Flexible and Piezoelectrically Tunable Quantum Dots Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901715.	7.3	10
122	Self-assembled polar hole-transport monolayer for high-performance perovskite photodetectors. Journal of Materials Chemistry C, 2021, 9, 5190-5197.	5.5	10
123	Room-temperature nanolaser from CdSe nanotubes embedded in anodic aluminum oxide nanocavity arrays. Applied Physics Letters, 2008, 93, .	3.3	9
124	Improving the thermoelectric performance of metastable rock-salt GeTe-rich Ge-Sb-Te thin films through tuning of grain orientation and vacancies. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 3122-3129.	1.8	9
125	Generation of Silver Metal Nanocluster Random Lasing. ACS Photonics, 2021, 8, 3051-3060.	6.6	9
126	Highly Efficient Photodetection in Metal Nanocluster/Graphene Heterojunctions. ACS Photonics, 2021, 8, 2955-2965.	6.6	9

#	Article	IF	CITATIONS
127	Liquid crystals driven by CdSe semiconductor. Journal of Applied Physics, 2006, 100, 024516.	2.5	8
128	Chiral angle dependence of resonance window widths in (2n+m) families of single-walled carbon nanotubes. Applied Physics Letters, 2010, 96, .	3.3	8
129	Effect of Lorentz local field for optical second order nonlinear susceptibility in ZnO nanorod. Journal of Applied Physics, 2012, 111, 103112.	2.5	8
130	Porphyrin dimers as donors for solution-processed bulk heterojunction organic solar cells. RSC Advances, 2016, 6, 60626-60632.	3.6	8
131	Enhanced laser action from smart fabrics made with rollable hyperbolic metamaterials. Npj Flexible Electronics, 2020, 4, .	10.7	8
132	Characterization of nonlinear absorption of InN epitaxial films with femtosecond pulsed transmission Z-scan measurements. Journal of Applied Physics, 2009, 105, 066101.	2.5	7
133	Mode Control of Random Laser Action Assisted by Whispering-Gallery-Mode Resonance. ACS Photonics, 2014, 1, 1258-1263.	6.6	7
134	An ultra-fast two-terminal organic phototransistor with vertical topology for information technologies. Applied Physics Letters, 2019, 114, .	3.3	7
135	Photoâ€Curable Ionâ€Enhanced Fluorinated Elastomers for Pressureâ€ S ensitive Textiles. Advanced Intelligent Systems, 2020, 2, 1900180.	6.1	7
136	Magnetically controllable and flexible phototransistor for artificial intelligent skin with additional perception. Organic Electronics, 2020, 85, 105849.	2.6	7
137	Stretchable and Broadband Cavityâ€Free Lasers Based on All 2D Metamaterials. Advanced Optical Materials, 2020, 8, 1901326.	7.3	7
138	Optically Encodable and Erasable Multilevel Nonvolatile Flexible Memory Device Based on Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 26895-26903.	8.0	7
139	Early development of cutaneous cancer revealed by intravital nonlinear optical microscopy. Applied Physics Letters, 2010, 97, 113702.	3.3	6
140	Efficient Charge Transfer and Carrier Extraction in All-Polymer Solar Cells Using an Acceptor Filler. ACS Applied Energy Materials, 2020, 3, 4217-4225.	5.1	6
141	Phosphor-Free Electrically Driven White Light Emission from Nanometer-Thick Barium–Organic Framework Films. ACS Applied Nano Materials, 2021, 4, 2395-2403.	5.0	6
142	Optical Detection of Glucose Based on a Composite Consisting of Enzymatic ZnO Nanorods and InGaN/GaN Multiple Quantum Wells. Journal of Physical Chemistry C, 2011, 115, 14664-14667.	3.1	5
143	Size effects on phonon localization and Raman enhancement in silicon nanotips. Journal of Raman Spectroscopy, 2013, 44, 81-85.	2.5	5
144	Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition. Scientific Reports, 2015, 5, 8965.	3.3	5

#	Article	IF	CITATIONS
145	Highâ€Performance Lightâ€Emitting Memories: Multifunctional Devices for Unveiling Information by Optical and Electrical Detection. Advanced Optical Materials, 2016, 4, 1744-1749.	7.3	5
146	Rippled Metallicâ€Nanowire/Graphene/Semiconductor Nanostack for a Gateâ€Tunable Ultrahighâ€Performance Stretchable Phototransistor. Advanced Optical Materials, 2020, 8, 2000859.	7.3	5
147	Three-dimensional nucleus-to-cytoplasm ratios provide better discrimination of normal and lung adenocarcinoma cells than in two dimensions. Journal of Biomedical Optics, 2019, 24, 1.	2.6	5
148	Label-free discrimination of normal and pulmonary cancer tissues using multiphoton fluorescence ratiometric microscopy. Applied Physics Letters, 2010, 97, 043706.	3.3	4
149	Application of Supramolecular Assembly of Porphyrin Dimers for Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2017, 121, 20084-20092.	3.1	4
150	Ultralow Threshold Cavity-Free Laser Induced by Total Internal Reflection. ACS Omega, 2020, 5, 18551-18556.	3.5	4
151	Excess Random Laser Action in Memories for Hybrid Optical/Electric Logic. ACS Applied Electronic Materials, 2020, 2, 954-961.	4.3	4
152	Anderson Localization Enabled Spectrally Stable Deep-Ultraviolet Laser Based on Metallic Nanoparticle Decorated AlGaN Multiple Quantum Wells. ACS Nano, 2021, 15, 330-337.	14.6	4
153	Chemical vapor deposition merges MoS ₂ grains into high-quality and centimeter-scale films on Si/SiO ₂ . RSC Advances, 2022, 12, 5990-5996.	3.6	4
154	Dirac Point Modulated Self-Powered Ultrasensitive Photoresponse and Color-Tunable Electroluminescence from Flexible Graphene/Metal–Organic Frameworks/Graphene Vertical Phototransistor. ACS Applied Electronic Materials, 2022, 4, 2337-2345.	4.3	4
155	Nanopatterned optical and magnetic La0.6Ca0.4MnO3 arrays: Synthesis, fabrication, and properties. Journal of Materials Research, 2009, 24, 394-403.	2.6	3
156	Enhancement of emission characteristics of cadmium-free ZCIS/ZnS/SiO ₂ quantum dots by Au nanoparticles. Applied Physics Letters, 2012, 101, 041908.	3.3	3
157	Effects of a thermally stable chlorophyll extract from diatom algae on surface textured Si solar cells. RSC Advances, 2015, 5, 35302-35306.	3.6	3
158	Tunneling-injection in vertical quasi-2D heterojunctions enabled efficient and adjustable optoelectronic conversion. Scientific Reports, 2016, 6, 31475.	3.3	3
159	An Arbitrary Color Light Emitter. Advanced Materials, 2017, 29, 1604076.	21.0	3
160	Quantification of collagen structural changes during chick corneal development. Journal of Biophotonics, 2020, 13, e201900144.	2.3	3
161	Multilevel Optical Labeling by Spectral Luminescence Control in Nanodiamond Color Centers. ACS Applied Materials & Interfaces, 2020, 12, 49006-49011.	8.0	3
162	Exciton Delocalization in Amino-Functionalized Inorganic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>Mo</mml:mi> <mml:mi mathvariant="normal">S </mml:mi </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> Quantum Disks: Giant Davydov Splitting and Exchange Narrowing. Physical Review Applied, 2021, 15, .</mml:math 	3.8	3

#	Article	IF	CITATIONS
163	A Transferrable, Adaptable, Free-Standing, and Water-Resistant Hyperbolic Metamaterial. ACS Applied Materials & Interfaces, 2021, 13, 49224-49231.	8.0	3
164	Second harmonic generation imaging reveals asymmetry in the rotational helicity of collagen lamellae in chicken corneas. Biomedical Optics Express, 2019, 10, 5223.	2.9	3
165	An Optically, Electrically, Magnetically Controllable Dualâ€Gate Phototransistor. Advanced Electronic Materials, 2022, 8, .	5.1	3
166	Comment on the Determination of the Midgap Density of States in Amorphous Semiconductors Using the Spaceâ€Chargeâ€Limitedâ€Current Method. Physica Status Solidi (B): Basic Research, 1989, 153, 695-701.	1.5	2
167	Surface potential and magnetic properties of La0.7Sr0.3MnO3 periodic arrays fabricated by direct electron beam writing. Journal of Applied Physics, 2008, 104, .	2.5	2
168	Enhanced performance of photodetector and photovoltaic based on carrier reflector and back surface field generated by doped graphene. Applied Physics Letters, 2012, 101, 073906.	3.3	2
169	All-carbon stretchable and cavity-free white lasers. Optics Express, 2022, 30, 20213.	3.4	2
170	Controllable orientation of assembled gold nanorods on unstructured substrates. RSC Advances, 2013, 3, 17696.	3.6	1
171	Magnetic-field annealing of inverted polymer:fullerene hybrid solar cells with FePt nanowires as additive. Applied Physics Letters, 2013, 103, 253305.	3.3	1
172	Graphene–Insulator–Semiconductor Ultraviolet Light-Responsive Nitride LEDs for Multi-Applications. ACS Applied Electronic Materials, 2020, 2, 2104-2112.	4.3	1
173	Photo urable Ionâ€Enhanced Fluorinated Elastomers for Pressureâ€5ensitive Textiles. Advanced Intelligent Systems, 2020, 2, 2070041.	6.1	1
174	Efficient light-confinement in heterostructured transition metal dichalcogenide-based nanoscrolls for high-performance photonic devices. Journal of Materials Research, 2022, 37, 660-669.	2.6	1
175	Multifunctional Controllable Two-Terminal Vertical Nonvolatile Memory Transistor. ACS Applied Electronic Materials, 2022, 4, 606-613.	4.3	1
176	Persistent Photoconductivity in Dopingâ€Modulated Amorphous Silicon Multilayers. Physica Status Solidi (B): Basic Research, 1990, 160, K103.	1.5	0
177	Cyclotron Resonance in Quasiâ€Twoâ€Dimensional Electron Systems in the Quantized Hall Region. Physica Status Solidi (B): Basic Research, 1992, 170, K103.	1.5	0
178	Nonlinear absorption of InN epitaxial films probed by femtosecond pulsed transmission Z-scan measurements. , 2009, , .		0
179	Recombination Dynamics of the Enhanced Quantum Efficiency in CdSe/ZnTe/ZnS Typeâ€II Quantum Dots. Journal of the Chinese Chemical Society, 2010, 57, 534-538.	1.4	0
180	Performance enhancement in organic-inorganic hybrid photovoltaic cells by adding a carbon-nanostructure interface layer. , 2011, , .		0

#	Article	IF	CITATIONS
181	The application of a magnetic field to improve polymer: Fullerence solar cell performance. , 2014, , .		Ο
182	Purely sidewall InGaN/GaN core-shell nanorod green light-emitting diodes. , 2015, , .		0
183	Polymer nanocomposite for improving light harvesting of perovskite solar cells. , 2016, , .		Ο
184	Random Lasers: Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network (Advanced Optical Materials 16/2018). Advanced Optical Materials, 2018, 6, 1870063.	7.3	0
185	Dynamic visualization of the recovery of mouse hepatobiliary metabolism to acetaminophenâ€overdose damage. Journal of Biophotonics, 2019, 12, e201800296.	2.3	0
186	Comments on "Cell regulation of collagen fibril macrostructure during corneal morphogenesis―by Koudouna et al Acta Biomaterialia, 2021, 136, 592-593.	8.3	0
187	Dynamic development of the extracellular matrix in chick cornea. Journal of Biophotonics, 2022, , e202100210.	2.3	0